Basins of measures on inverse limit spaces for the induced homeomorphism

Let f:X→X be continuous and onto, where X is a compact metric space. Let $Y:=\invlim {X,f}$ be the inverse limit and F:Y →Y the induced homeomorphism. Suppose that μ is an f-invariant measure, and let m be the measure induced on Y by (μ,μ,…). We show that B is a basin of μ if and only if π−11(B) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2010-08, Vol.30 (4), p.1119-1130
Hauptverfasser: KENNEDY, JUDY, RAINES, BRIAN E., STOCKMAN, DAVID R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f:X→X be continuous and onto, where X is a compact metric space. Let $Y:=\invlim {X,f}$ be the inverse limit and F:Y →Y the induced homeomorphism. Suppose that μ is an f-invariant measure, and let m be the measure induced on Y by (μ,μ,…). We show that B is a basin of μ if and only if π−11(B) is a basin of m. From this it follows that if μ is an SRB measure for f on X, then the induced measure m on Y is an inverse-limit SRB measure for F. Conversely, if m is an inverse-limit SRB measure for F on Y, then the induced measure μ on X is an SRB measure for f.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385709000388