A comparison theorem for solutions of degenerate parabolic equations on manifolds

We compare solutions of a class of degenerate parabolic equations on a Riemannian manifold $M$ with solutions of the equation on a model manifold. The class of equations under consideration contains both the parabolic $p$-Laplace equation and the porous medium equation. We prove that, under curvatur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2008-08, Vol.138 (4), p.755-767
1. Verfasser: Dekkers, S. A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compare solutions of a class of degenerate parabolic equations on a Riemannian manifold $M$ with solutions of the equation on a model manifold. The class of equations under consideration contains both the parabolic $p$-Laplace equation and the porous medium equation. We prove that, under curvature conditions, solutions on model manifolds induce sub- or supersolutions on $M$. Using this result, we obtain curvature-dependent estimates for the speed of propagation of solutions.
ISSN:0308-2105
1473-7124
DOI:10.1017/S0308210505000880