A comparison theorem for solutions of degenerate parabolic equations on manifolds
We compare solutions of a class of degenerate parabolic equations on a Riemannian manifold $M$ with solutions of the equation on a model manifold. The class of equations under consideration contains both the parabolic $p$-Laplace equation and the porous medium equation. We prove that, under curvatur...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2008-08, Vol.138 (4), p.755-767 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compare solutions of a class of degenerate parabolic equations on a Riemannian manifold $M$ with solutions of the equation on a model manifold. The class of equations under consideration contains both the parabolic $p$-Laplace equation and the porous medium equation. We prove that, under curvature conditions, solutions on model manifolds induce sub- or supersolutions on $M$. Using this result, we obtain curvature-dependent estimates for the speed of propagation of solutions. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/S0308210505000880 |