Crossover in coarsening rates for the monopole approximation of the Mullins–Sekerka model with kinetic drag

The Mullins–Sekerka sharp-interface model for phase transitions interpolates between attachment-limited and diffusion-limited kinetics if kinetic drag is included in the Gibbs–Thomson interface condition. Heuristics suggest that the typical length-scale of patterns may exhibit a crossover in coarsen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2010-06, Vol.140 (3), p.553-571
Hauptverfasser: Dai, Shibin, Niethammer, Barbara, Pego, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Mullins–Sekerka sharp-interface model for phase transitions interpolates between attachment-limited and diffusion-limited kinetics if kinetic drag is included in the Gibbs–Thomson interface condition. Heuristics suggest that the typical length-scale of patterns may exhibit a crossover in coarsening rate from l(t) ˜ t1/2 at short times to l(t) ˜ t1/3 at long times. We establish rigorous, universal one-sided bounds on energy decay that partially justify this understanding in the monopole approximation and in the associated Lifshitz–Slyozov–Wagner mean-field model. Numerical simulations for the Lifshitz–Slyozov–Wagner model illustrate the crossover behaviour. The proofs are based on a method for estimating coarsening rates introduced by Kohn and Otto, and make use of a gradient-flow structure that the monopole approximation inherits from the Mullins–Sekerka model by restricting particle geometry to spheres.
ISSN:0308-2105
1473-7124
DOI:10.1017/S030821050900033X