The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids
By conventional definition, a supercritical fluid is one that doesn’t exhibit distinct liquid- or gas-like states. This may need to be revised in light of measurements that show a sharp change in the speed of sound in supercritical argon when it crosses a well-defined line on its pressure versus tem...
Gespeichert in:
Veröffentlicht in: | Nature physics 2010-07, Vol.6 (7), p.503-507 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By conventional definition, a supercritical fluid is one that doesn’t exhibit distinct liquid- or gas-like states. This may need to be revised in light of measurements that show a sharp change in the speed of sound in supercritical argon when it crosses a well-defined line on its pressure versus temperature phase diagram.
According to textbook definitions
1
, there exists no physical observable able to distinguish a liquid from a gas beyond the critical point, and hence only a single fluid phase is defined. There are, however, some thermophysical quantities, having maxima that define a line emanating from the critical point, named ‘the Widom line’
2
in the case of the constant-pressure specific heat. We determined the velocity of nanometric acoustic waves in supercritical fluid argon at high pressures by inelastic X-ray scattering and molecular dynamics simulations. Our study reveals a sharp transition on crossing the Widom line demonstrating how the supercritical region is actually divided into two regions that, although not connected by a first-order singularity, can be identified by different dynamical regimes: gas-like and liquid-like, reminiscent of the subcritical domains. These findings will pave the way to a deeper understanding of hot dense fluids, which are of paramount importance in fundamental and applied sciences. |
---|---|
ISSN: | 1745-2473 1745-2481 |
DOI: | 10.1038/nphys1683 |