RICCI FLOW, ENTROPY AND OPTIMAL TRANSPORTATION

Let a smooth family of Riemannian metrics g(τ) satisfy the backwards Ricci flow equation on a compact oriented n-dimensional manifold M. Suppose two families of normalized n-forms ω(τ)≥ 0 andῶ(τ) ≥0 satisfy the forwards (in τ) heat equation on M generated by the connection Laplacian Δg(τ). If these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2010-06, Vol.132 (3), p.711-730
Hauptverfasser: McCann, Robert J., Topping, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let a smooth family of Riemannian metrics g(τ) satisfy the backwards Ricci flow equation on a compact oriented n-dimensional manifold M. Suppose two families of normalized n-forms ω(τ)≥ 0 andῶ(τ) ≥0 satisfy the forwards (in τ) heat equation on M generated by the connection Laplacian Δg(τ). If these n-forms represent two evolving distributions of particles over M, the minimum root-mean-square distance W 2 (ω(τ),ῶ(τ),τ) to transport the particles of ω(τ)onto those of ῶ(τ) is shown to be non-increasing as a function of τ, without sign conditions on the curvature of (M,g(τ)). Moreover, this contractivity property is shown to characterize supersolutions to the Ricci flow.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.0.0110