Laser processing of materials: a new strategy toward materials design and fabrication for electronic packaging

Purpose - Material formulation, structuring and modification are key to increasing the unit volume complexity and density of next generation electronic packaging products. Laser processing is finding an increasing number of applications in the fabrication of these advanced microelectronic devices. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuit world 2010-05, Vol.36 (2), p.24-32
Hauptverfasser: Das, Rabindra N., Egitto, Frank D., Markovich, Voya R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose - Material formulation, structuring and modification are key to increasing the unit volume complexity and density of next generation electronic packaging products. Laser processing is finding an increasing number of applications in the fabrication of these advanced microelectronic devices. The purpose of this paper is to discuss the development of new laser-processing capabilities involving the synthesis and optimization of materials for tunable device applications.Design methodology approach - The paper focuses on the application of laser processing to two specific material areas, namely thin films and nanocomposite films. The examples include BaTiO3-based thin films and BaTiO3 polymer-based nanocomposites.Findings - A variety of new regular and random 3D surface patterns are highlighted. A frequency-tripled Nd:YAG laser operating at a wavelength of 355 nm is used for the micromachining study. The micromachining is used to make various patterned surface morphologies. Depending on the laser fluence used, one can form a "wavy," random 3D structure, or an array of regular 3D patterns. Furthermore, the laser was used to generate free-standing nano and micro particles from thin film surfaces. In the case of BaTiO3 polymer-based nanocomposites, micromachining is used to generate arrays of variable-thickness capacitors. The resultant thickness of the capacitors depends on the number of laser pulses applied. Micromachining is also used to make long, deep, multiple channels in capacitance layers. When these channels are filled with metal, the spacings between two metallized channels acted as individual vertical capacitors, and parallel connection eventually produce vertical multilayer capacitors. For a given volume of capacitor material, theoretical capacitance calculations are made for variable channel widths and spacings. For comparison, calculations are also made for a "normal" capacitor, that is, a horizontal capacitor having a single pair of electrodes.Research limitations implications - This technique can be used to prepare capacitors of various thicknesses from the same capacitance layer, and ultimately can produce variable capacitance density, or a library of capacitors. The process is also capable of making vertical 3D multilayer embedded capacitors from a single capacitance layer. The capacitance benefit of the vertical multilayer capacitors is more pronounced for thicker capacitance layers. The application of a laser processing approach can grea
ISSN:0305-6120
1758-602X
DOI:10.1108/03056121011041672