The horseshoe estimator for sparse signals

This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises from a prior based on multivariate-normal scale mixtures. We describe the estimator’s advantages over existing approaches, including its robustness, adaptivity to different sparsity patterns and analytical t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2010-06, Vol.97 (2), p.465-480
Hauptverfasser: Carvalho, Carlos M., Polson, Nicholas G., Scott, James G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 2
container_start_page 465
container_title Biometrika
container_volume 97
creator Carvalho, Carlos M.
Polson, Nicholas G.
Scott, James G.
description This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises from a prior based on multivariate-normal scale mixtures. We describe the estimator’s advantages over existing approaches, including its robustness, adaptivity to different sparsity patterns and analytical tractability. We prove two theorems: one that characterizes the horseshoe estimator’s tail robustness and the other that demonstrates a super-efficient rate of convergence to the correct estimate of the sampling density in sparse situations. Finally, using both real and simulated data, we show that the horseshoe estimator corresponds quite closely to the answers obtained by Bayesian model averaging under a point-mass mixture prior.
doi_str_mv 10.1093/biomet/asq017
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_347005426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25734098</jstor_id><sourcerecordid>25734098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f15f7f193cf2bb91c98625526fddb38df9f806a7982d0830f9b7a4f6eff0ffc13</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWB9Ll0IR3AijN-_JUoq2loIoFcRNyExz7VTrjMlU9N-bMqVdnNyE-3E4OYScUbimYPhNUdVL3964-A1U75EeFUpkXFLYJz0AUBkXQhySoxgX66eSqkeupnPfn9ch-jivfd_Htlq6tg59TIqNS4t-rN6_3Gc8IQeYhj_dzGPycn83HYyyyePwYXA7yUrBaJshlaiRGl4iKwpDS5MrJiVTOJsVPJ-hwRyU0yZnM8g5oCm0E6g8IiCWlB-Ti863CfX3KiWyi3oV1gksFxpACqYSlHVQGeoYg0fbhJQ8_FkKdt2G7dqwXRuJH3d88I0vt3C9ajbcj-XO6HT8JTFILtxV62tSkySUtCIHO2-Xyexyk9DF0n1icF9lFbemjAMTxpjEnXfcIqZKd3upuQCT7z5Rxdb_bvcufFiluZZ29Ppmn-h0OH4epmj8H8NXkzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>347005426</pqid></control><display><type>article</type><title>The horseshoe estimator for sparse signals</title><source>RePEc</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Carvalho, Carlos M. ; Polson, Nicholas G. ; Scott, James G.</creator><creatorcontrib>Carvalho, Carlos M. ; Polson, Nicholas G. ; Scott, James G.</creatorcontrib><description>This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises from a prior based on multivariate-normal scale mixtures. We describe the estimator’s advantages over existing approaches, including its robustness, adaptivity to different sparsity patterns and analytical tractability. We prove two theorems: one that characterizes the horseshoe estimator’s tail robustness and the other that demonstrates a super-efficient rate of convergence to the correct estimate of the sampling density in sparse situations. Finally, using both real and simulated data, we show that the horseshoe estimator corresponds quite closely to the answers obtained by Bayesian model averaging under a point-mass mixture prior.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asq017</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Applications ; Bayes estimators ; Bayesian analysis ; Bayesian networks ; Biology, psychology, social sciences ; Density estimation ; Estimating techniques ; Estimators ; Exact sciences and technology ; General topics ; Horseshoes ; Mathematics ; Maximum likelihood estimation ; Modeling ; Nonparametric inference ; Normal scale mixture ; Parametric inference ; Parametric models ; Probability and statistics ; Ridge regression ; Robustness ; Sampling ; Sciences and techniques of general use ; Shrinkage ; Signal noise ; Simulation ; Sparsity ; Statistics ; Studies ; Threshing ; Thresholding</subject><ispartof>Biometrika, 2010-06, Vol.97 (2), p.465-480</ispartof><rights>2010 Biometrika Trust</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f15f7f193cf2bb91c98625526fddb38df9f806a7982d0830f9b7a4f6eff0ffc13</citedby><cites>FETCH-LOGICAL-c421t-f15f7f193cf2bb91c98625526fddb38df9f806a7982d0830f9b7a4f6eff0ffc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25734098$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25734098$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4007,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23024999$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a97_3ay_3a2010_3ai_3a2_3ap_3a465-480.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Carlos M.</creatorcontrib><creatorcontrib>Polson, Nicholas G.</creatorcontrib><creatorcontrib>Scott, James G.</creatorcontrib><title>The horseshoe estimator for sparse signals</title><title>Biometrika</title><description>This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises from a prior based on multivariate-normal scale mixtures. We describe the estimator’s advantages over existing approaches, including its robustness, adaptivity to different sparsity patterns and analytical tractability. We prove two theorems: one that characterizes the horseshoe estimator’s tail robustness and the other that demonstrates a super-efficient rate of convergence to the correct estimate of the sampling density in sparse situations. Finally, using both real and simulated data, we show that the horseshoe estimator corresponds quite closely to the answers obtained by Bayesian model averaging under a point-mass mixture prior.</description><subject>Applications</subject><subject>Bayes estimators</subject><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>Biology, psychology, social sciences</subject><subject>Density estimation</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Horseshoes</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Modeling</subject><subject>Nonparametric inference</subject><subject>Normal scale mixture</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Ridge regression</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Sciences and techniques of general use</subject><subject>Shrinkage</subject><subject>Signal noise</subject><subject>Simulation</subject><subject>Sparsity</subject><subject>Statistics</subject><subject>Studies</subject><subject>Threshing</subject><subject>Thresholding</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNpFkEtLAzEUhYMoWB9Ll0IR3AijN-_JUoq2loIoFcRNyExz7VTrjMlU9N-bMqVdnNyE-3E4OYScUbimYPhNUdVL3964-A1U75EeFUpkXFLYJz0AUBkXQhySoxgX66eSqkeupnPfn9ch-jivfd_Htlq6tg59TIqNS4t-rN6_3Gc8IQeYhj_dzGPycn83HYyyyePwYXA7yUrBaJshlaiRGl4iKwpDS5MrJiVTOJsVPJ-hwRyU0yZnM8g5oCm0E6g8IiCWlB-Ti863CfX3KiWyi3oV1gksFxpACqYSlHVQGeoYg0fbhJQ8_FkKdt2G7dqwXRuJH3d88I0vt3C9ajbcj-XO6HT8JTFILtxV62tSkySUtCIHO2-Xyexyk9DF0n1icF9lFbemjAMTxpjEnXfcIqZKd3upuQCT7z5Rxdb_bvcufFiluZZ29Ppmn-h0OH4epmj8H8NXkzg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Carvalho, Carlos M.</creator><creator>Polson, Nicholas G.</creator><creator>Scott, James G.</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100601</creationdate><title>The horseshoe estimator for sparse signals</title><author>Carvalho, Carlos M. ; Polson, Nicholas G. ; Scott, James G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f15f7f193cf2bb91c98625526fddb38df9f806a7982d0830f9b7a4f6eff0ffc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications</topic><topic>Bayes estimators</topic><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>Biology, psychology, social sciences</topic><topic>Density estimation</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Horseshoes</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Modeling</topic><topic>Nonparametric inference</topic><topic>Normal scale mixture</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Ridge regression</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Sciences and techniques of general use</topic><topic>Shrinkage</topic><topic>Signal noise</topic><topic>Simulation</topic><topic>Sparsity</topic><topic>Statistics</topic><topic>Studies</topic><topic>Threshing</topic><topic>Thresholding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Carlos M.</creatorcontrib><creatorcontrib>Polson, Nicholas G.</creatorcontrib><creatorcontrib>Scott, James G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Carlos M.</au><au>Polson, Nicholas G.</au><au>Scott, James G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The horseshoe estimator for sparse signals</atitle><jtitle>Biometrika</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>97</volume><issue>2</issue><spage>465</spage><epage>480</epage><pages>465-480</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises from a prior based on multivariate-normal scale mixtures. We describe the estimator’s advantages over existing approaches, including its robustness, adaptivity to different sparsity patterns and analytical tractability. We prove two theorems: one that characterizes the horseshoe estimator’s tail robustness and the other that demonstrates a super-efficient rate of convergence to the correct estimate of the sampling density in sparse situations. Finally, using both real and simulated data, we show that the horseshoe estimator corresponds quite closely to the answers obtained by Bayesian model averaging under a point-mass mixture prior.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asq017</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2010-06, Vol.97 (2), p.465-480
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_347005426
source RePEc; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Applications
Bayes estimators
Bayesian analysis
Bayesian networks
Biology, psychology, social sciences
Density estimation
Estimating techniques
Estimators
Exact sciences and technology
General topics
Horseshoes
Mathematics
Maximum likelihood estimation
Modeling
Nonparametric inference
Normal scale mixture
Parametric inference
Parametric models
Probability and statistics
Ridge regression
Robustness
Sampling
Sciences and techniques of general use
Shrinkage
Signal noise
Simulation
Sparsity
Statistics
Studies
Threshing
Thresholding
title The horseshoe estimator for sparse signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20horseshoe%20estimator%20for%20sparse%20signals&rft.jtitle=Biometrika&rft.au=Carvalho,%20Carlos%20M.&rft.date=2010-06-01&rft.volume=97&rft.issue=2&rft.spage=465&rft.epage=480&rft.pages=465-480&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asq017&rft_dat=%3Cjstor_proqu%3E25734098%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=347005426&rft_id=info:pmid/&rft_jstor_id=25734098&rfr_iscdi=true