The horseshoe estimator for sparse signals

This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises from a prior based on multivariate-normal scale mixtures. We describe the estimator’s advantages over existing approaches, including its robustness, adaptivity to different sparsity patterns and analytical t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2010-06, Vol.97 (2), p.465-480
Hauptverfasser: Carvalho, Carlos M., Polson, Nicholas G., Scott, James G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises from a prior based on multivariate-normal scale mixtures. We describe the estimator’s advantages over existing approaches, including its robustness, adaptivity to different sparsity patterns and analytical tractability. We prove two theorems: one that characterizes the horseshoe estimator’s tail robustness and the other that demonstrates a super-efficient rate of convergence to the correct estimate of the sampling density in sparse situations. Finally, using both real and simulated data, we show that the horseshoe estimator corresponds quite closely to the answers obtained by Bayesian model averaging under a point-mass mixture prior.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asq017