Research on Transformer Temperature Early Warning Method Based on Adaptive Sliding Window and Stacking
This paper proposes a transformer temperature early warning method based on an adaptive sliding window and stacking ensemble learning algorithm, aiming to improve the accuracy and robustness of temperature prediction. The transformer temperature early warning system is crucial for ensuring the safe...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2025-01, Vol.14 (2), p.373 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a transformer temperature early warning method based on an adaptive sliding window and stacking ensemble learning algorithm, aiming to improve the accuracy and robustness of temperature prediction. The transformer temperature early warning system is crucial for ensuring the safe operation of the power system, and temperature prediction, as the foundation of early warning, directly affects the early warning effectiveness. This paper analyzes the characteristics of transformer temperature using support vector regression, random forest, and gradient boosting regression as base learners and ridge regression as the meta-learner to construct a stacking model. At the same time, Bayesian optimization is used to automatically adjust the sliding window size, achieving adaptive sliding window processing. The experimental results indicate that the temperature prediction method based on adaptive sliding window and stacking significantly reduces prediction errors, enhances the model’s adaptability and generalization ability, and provides more reliable technical support for transformer fault warning. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics14020373 |