Innovative Framework for Historical Architectural Recognition in China: Integrating Swin Transformer and Global Channel–Spatial Attention Mechanism
The digital recognition and preservation of historical architectural heritage has become a critical challenge in cultural inheritance and sustainable urban development. While deep learning methods show promise in architectural classification, existing models often struggle to achieve ideal results d...
Gespeichert in:
Veröffentlicht in: | Buildings (Basel) 2025-01, Vol.15 (2), p.176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The digital recognition and preservation of historical architectural heritage has become a critical challenge in cultural inheritance and sustainable urban development. While deep learning methods show promise in architectural classification, existing models often struggle to achieve ideal results due to the complexity and uniqueness of historical buildings, particularly the limited data availability in remote areas. Focusing on the study of Chinese historical architecture, this research proposes an innovative architectural recognition framework that integrates the Swin Transformer backbone with a custom-designed Global Channel and Spatial Attention (GCSA) mechanism, thereby substantially enhancing the model’s capability to extract architectural details and comprehend global contextual information. Through extensive experiments on a constructed historical building dataset, our model achieves an outstanding performance of over 97.8% in key metrics including accuracy, precision, recall, and F1 score (harmonic mean of the precision and recall), surpassing traditional CNN (convolutional neural network) architectures and contemporary deep learning models. To gain deeper insights into the model’s decision-making process, we employed comprehensive interpretability methods including t-SNE (t-distributed Stochastic Neighbor Embedding), Grad-CAM (gradient-weighted class activation mapping), and multi-layer feature map analysis, revealing the model’s systematic feature extraction process from structural elements to material textures. This study offers substantial technical support for the digital modeling and recognition of architectural heritage in historical buildings, establishing a foundation for heritage damage assessment. It contributes to the formulation of precise restoration strategies and provides a scientific basis for governments and cultural heritage institutions to develop region-specific policies for conservation efforts. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings15020176 |