Study on the Role and Pathological and Immune Responses of Silver Nanoparticles Against Two Aeromonas salmonicida subsp. salmonicida Strains at Different Virulence Levels in Rainbow Trout (Oncorhynchus mykiss)

Aeromonas species are among the main pathogens causing rainbow trout infections. Silver nanoparticles (AgNPs) have a broad spectrum of antimicrobial properties and are usually produced by various green-synthesis methods. However, the application of commercialized AgNPs has not fully been clarified....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fishes 2025-01, Vol.10 (1), p.29
Hauptverfasser: Guo, Yunqiang, Zheng, Chaoli, Wang, Yingfei, Dang, Yongji, Li, Ruiyuan, Tao, Ye, Yang, Yucheng, Sun, Xiaofeng, Song, Zekun, Sun, Pengcheng, Zhang, Qian, Qian, Dandan, Ren, Wenhao, Cao, Xiyu, Wang, Bowen, Xu, Mengxi, Jiang, Bingyang, Li, Yujing, Sun, Qing, Wang, Jinye, Zheng, Lei, Sun, Yanling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aeromonas species are among the main pathogens causing rainbow trout infections. Silver nanoparticles (AgNPs) have a broad spectrum of antimicrobial properties and are usually produced by various green-synthesis methods. However, the application of commercialized AgNPs has not fully been clarified. Thus, the objective of this study was to evaluate the antibacterial activities of commercialized AgNPs (range of sizes 10–12 nm) on two contrasting A. salmonicida strains (I-1 and I-4), isolated from rainbow trout; the antibacterial mechanism, histopathological alterations and the expression of immune-related genes were investigated. In vitro, the minimal inhibitory concentration (MIC) was 10 µg/mL for I-1, and lowered to 9.5 µg/mL for I-4, respectively. AgNPs were shown to disrupt both the cell wall and membrane of I-1 and I-4, resulting in cell lysis and degradation. In vivo, rainbow trout challenged by immersed or intraperitoneally injected infection, the 10 µg/mL AgNP-treated groups, both showed delayed deaths and lower mortalities compared to the control groups, without any clinical signs and pathological changes. Especially for the virulent I-4, the enhanced expressions of immune-related genes TNF-α, IL-1β, IL-10 and IL-11 were significantly reduced in the AgNP-treated group, indicating a lesser inflammation due to the application of AgNPs. This study would lay theoretical foundation for the wide application of silver nanoparticles in fish diseases.
ISSN:2410-3888
2410-3888
DOI:10.3390/fishes10010029