Experimental Investigations on Impact Toughness and Shear Strength of Novel Lead Free Solder Alloy Sn-1Cu-1Ni-XAg

Lead is known to be banned in alloy making, highlighting toxicity concerns and environmental legislations. Researchers and scholars around the globe were in immediate search of new lead free solder alloys which could potentially replace the old Sn-Pb alloy. In this comprehensive study, shear strengt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder Metallurgy Progress 2019-12, Vol.19 (2), p.90-96
Hauptverfasser: Jayesh, S, Elias, Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lead is known to be banned in alloy making, highlighting toxicity concerns and environmental legislations. Researchers and scholars around the globe were in immediate search of new lead free solder alloys which could potentially replace the old Sn-Pb alloy. In this comprehensive study, shear strength and impact toughness tests were conducted on Sn-1Cu-1Ni when different amounts of Ag (0.25, 0.5, 0.75 1 % by wt.) is added. Shear strength test is tested using micro force test system. Impact toughness test is analyzed using Charpy impact test set up by calculating the energy difference before and after impact. The study reveals that, Ultimate shear stress increased from 19 MPa to 21.3 MPa. Yield strength increased from 27.4 MPa to 29.7 Mpa. Impact toughness of the alloys increased from 9.4 J to 10.1 J. Thus, Sn-1Cu-1Ni-1Ag is found to have improved shear strength and impact toughness than Sn-1Cu-1Ni.
ISSN:1339-4533
1335-8987
1339-4533
DOI:10.1515/pmp-2019-0009