Exploring the Side-Information Fusion for Sequential Recommendation

Side information fusion for sequential recommendation aims to mitigate the data sparsity problems by leveraging the additional knowledge besides item ID. While most state-of-the-art methods devised elaborate fusion methods to incorporate side-information, they overlooked that there are distinct char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2025, Vol.13, p.8839-8850
Hauptverfasser: Choi, Seunghwan, Lee, Donghoon, Kang, Hyeoungguk, Cho, Hyunsouk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Side information fusion for sequential recommendation aims to mitigate the data sparsity problems by leveraging the additional knowledge besides item ID. While most state-of-the-art methods devised elaborate fusion methods to incorporate side-information, they overlooked that there are distinct characteristics of the side-information, which can be grouped into two types: item attribute (e.g., category and brand) and user behavior (e.g., position and rating). In this paper, we argue that attribute information and behavior information are fundamentally different in relation to the item. The former is inherent to the item, whereas the latter is not. Based on this intuition, we systematically analyzed the previous fusion approach and introduced a comprehensive framework for two types of side information. Finally, we devise self-supervised objectives fitting for each type of side-information in a multi-task training scheme. To validate the effectiveness of our proposed method, we conduct experiments across various domains.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2025.3525812