Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism

ABSTRACT Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2025-02, Vol.48 (2), p.967-975
Hauptverfasser: Sano, Ryuto, Koga, Yuta, Sato, Yusuke, Kikuchi, Takuto, Hosoi, Atsushi, Kawahara, Kota, Takebe, Yoshiki, Kawada, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue 2
container_start_page 967
container_title Fatigue & fracture of engineering materials & structures
container_volume 48
creator Sano, Ryuto
Koga, Yuta
Sato, Yusuke
Kikuchi, Takuto
Hosoi, Atsushi
Kawahara, Kota
Takebe, Yoshiki
Kawada, Hiroyuki
description ABSTRACT Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the digital image correlation (DIC) method, distinct stiffness reduction behavior was observed across the entire specimen and at the fracture points. The results suggest that local stiffness reduction behavior affects the fatigue properties. From the DIC method, damage was observed by scanning electron microscopy and the fiber tortuosity, and the void fraction were quantified using X‐ray computed tomography scans. In the case of three‐dimensional oriented fibers, stress was concentrated at fiber ends, fiber intersections, and bent fibers, resulting in fiber pull‐outs and matrix cracks. In the case of voids, the void size affected damage development, and the stress concentration around the voids caused fiber fracture and matrix cracks.
doi_str_mv 10.1111/ffe.14518
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3155434464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155434464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1878-88c5a3a213f21ad16c4debf20e7335c2a538aa9a32dcdc9343bf153b23f204983</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSxrGduCMqTUEqKkIgsUUX59ymauPWTindeAfekCfBUFZuueX7_tP9hFyyuMfC9I3BHhOSqSPSYSKNoyQdyGPSUZlMo0yq11Ny5v0ijlkqOO-QTQ5tPdsifXR2ja6t0VNr6BBcaRua1yW6r4_PJ6wbY53GiuYWVp5CU9HRexDqFTYtLOm09OjeQlawgt_Okd7CCmZIx87u2jl9QD2Hpvarc3JiYOnx4m93yUs-eh7eRZPp-H54M4k0U5mKlNISOCSMm4RBxVItKixNEmPGudQJSK4ABsCTSld6wAUvDZO8TAIfi4HiXXJ1yF07u9mib4uF3bomnCw4k1JwIUIFXXJ9oLSz3js0xTr8BG5fsLj4abQIjRa_jQa2f2B39RL3_4NFno8Oxjed83kr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155434464</pqid></control><display><type>article</type><title>Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sano, Ryuto ; Koga, Yuta ; Sato, Yusuke ; Kikuchi, Takuto ; Hosoi, Atsushi ; Kawahara, Kota ; Takebe, Yoshiki ; Kawada, Hiroyuki</creator><creatorcontrib>Sano, Ryuto ; Koga, Yuta ; Sato, Yusuke ; Kikuchi, Takuto ; Hosoi, Atsushi ; Kawahara, Kota ; Takebe, Yoshiki ; Kawada, Hiroyuki</creatorcontrib><description>ABSTRACT Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the digital image correlation (DIC) method, distinct stiffness reduction behavior was observed across the entire specimen and at the fracture points. The results suggest that local stiffness reduction behavior affects the fatigue properties. From the DIC method, damage was observed by scanning electron microscopy and the fiber tortuosity, and the void fraction were quantified using X‐ray computed tomography scans. In the case of three‐dimensional oriented fibers, stress was concentrated at fiber ends, fiber intersections, and bent fibers, resulting in fiber pull‐outs and matrix cracks. In the case of voids, the void size affected damage development, and the stress concentration around the voids caused fiber fracture and matrix cracks.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.14518</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Carbon fiber reinforced plastics ; carbon fiber–reinforced foams ; Composite materials ; Computed tomography ; Damage ; Digital imaging ; Fatigue failure ; Fatigue tests ; foam ; fracture mechanism ; Fracture point ; Matrix cracks ; Plastic foam ; Stiffness ; stiffness reduction ; Stress concentration ; Tortuosity ; Void fraction</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2025-02, Vol.48 (2), p.967-975</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2025 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1878-88c5a3a213f21ad16c4debf20e7335c2a538aa9a32dcdc9343bf153b23f204983</cites><orcidid>0000-0002-5245-0965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.14518$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.14518$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sano, Ryuto</creatorcontrib><creatorcontrib>Koga, Yuta</creatorcontrib><creatorcontrib>Sato, Yusuke</creatorcontrib><creatorcontrib>Kikuchi, Takuto</creatorcontrib><creatorcontrib>Hosoi, Atsushi</creatorcontrib><creatorcontrib>Kawahara, Kota</creatorcontrib><creatorcontrib>Takebe, Yoshiki</creatorcontrib><creatorcontrib>Kawada, Hiroyuki</creatorcontrib><title>Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>ABSTRACT Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the digital image correlation (DIC) method, distinct stiffness reduction behavior was observed across the entire specimen and at the fracture points. The results suggest that local stiffness reduction behavior affects the fatigue properties. From the DIC method, damage was observed by scanning electron microscopy and the fiber tortuosity, and the void fraction were quantified using X‐ray computed tomography scans. In the case of three‐dimensional oriented fibers, stress was concentrated at fiber ends, fiber intersections, and bent fibers, resulting in fiber pull‐outs and matrix cracks. In the case of voids, the void size affected damage development, and the stress concentration around the voids caused fiber fracture and matrix cracks.</description><subject>Carbon fiber reinforced plastics</subject><subject>carbon fiber–reinforced foams</subject><subject>Composite materials</subject><subject>Computed tomography</subject><subject>Damage</subject><subject>Digital imaging</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>foam</subject><subject>fracture mechanism</subject><subject>Fracture point</subject><subject>Matrix cracks</subject><subject>Plastic foam</subject><subject>Stiffness</subject><subject>stiffness reduction</subject><subject>Stress concentration</subject><subject>Tortuosity</subject><subject>Void fraction</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSxrGduCMqTUEqKkIgsUUX59ymauPWTindeAfekCfBUFZuueX7_tP9hFyyuMfC9I3BHhOSqSPSYSKNoyQdyGPSUZlMo0yq11Ny5v0ijlkqOO-QTQ5tPdsifXR2ja6t0VNr6BBcaRua1yW6r4_PJ6wbY53GiuYWVp5CU9HRexDqFTYtLOm09OjeQlawgt_Okd7CCmZIx87u2jl9QD2Hpvarc3JiYOnx4m93yUs-eh7eRZPp-H54M4k0U5mKlNISOCSMm4RBxVItKixNEmPGudQJSK4ABsCTSld6wAUvDZO8TAIfi4HiXXJ1yF07u9mib4uF3bomnCw4k1JwIUIFXXJ9oLSz3js0xTr8BG5fsLj4abQIjRa_jQa2f2B39RL3_4NFno8Oxjed83kr</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Sano, Ryuto</creator><creator>Koga, Yuta</creator><creator>Sato, Yusuke</creator><creator>Kikuchi, Takuto</creator><creator>Hosoi, Atsushi</creator><creator>Kawahara, Kota</creator><creator>Takebe, Yoshiki</creator><creator>Kawada, Hiroyuki</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5245-0965</orcidid></search><sort><creationdate>202502</creationdate><title>Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism</title><author>Sano, Ryuto ; Koga, Yuta ; Sato, Yusuke ; Kikuchi, Takuto ; Hosoi, Atsushi ; Kawahara, Kota ; Takebe, Yoshiki ; Kawada, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1878-88c5a3a213f21ad16c4debf20e7335c2a538aa9a32dcdc9343bf153b23f204983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>carbon fiber–reinforced foams</topic><topic>Composite materials</topic><topic>Computed tomography</topic><topic>Damage</topic><topic>Digital imaging</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>foam</topic><topic>fracture mechanism</topic><topic>Fracture point</topic><topic>Matrix cracks</topic><topic>Plastic foam</topic><topic>Stiffness</topic><topic>stiffness reduction</topic><topic>Stress concentration</topic><topic>Tortuosity</topic><topic>Void fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sano, Ryuto</creatorcontrib><creatorcontrib>Koga, Yuta</creatorcontrib><creatorcontrib>Sato, Yusuke</creatorcontrib><creatorcontrib>Kikuchi, Takuto</creatorcontrib><creatorcontrib>Hosoi, Atsushi</creatorcontrib><creatorcontrib>Kawahara, Kota</creatorcontrib><creatorcontrib>Takebe, Yoshiki</creatorcontrib><creatorcontrib>Kawada, Hiroyuki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sano, Ryuto</au><au>Koga, Yuta</au><au>Sato, Yusuke</au><au>Kikuchi, Takuto</au><au>Hosoi, Atsushi</au><au>Kawahara, Kota</au><au>Takebe, Yoshiki</au><au>Kawada, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2025-02</date><risdate>2025</risdate><volume>48</volume><issue>2</issue><spage>967</spage><epage>975</epage><pages>967-975</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>ABSTRACT Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the digital image correlation (DIC) method, distinct stiffness reduction behavior was observed across the entire specimen and at the fracture points. The results suggest that local stiffness reduction behavior affects the fatigue properties. From the DIC method, damage was observed by scanning electron microscopy and the fiber tortuosity, and the void fraction were quantified using X‐ray computed tomography scans. In the case of three‐dimensional oriented fibers, stress was concentrated at fiber ends, fiber intersections, and bent fibers, resulting in fiber pull‐outs and matrix cracks. In the case of voids, the void size affected damage development, and the stress concentration around the voids caused fiber fracture and matrix cracks.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.14518</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5245-0965</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2025-02, Vol.48 (2), p.967-975
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_3155434464
source Wiley Online Library Journals Frontfile Complete
subjects Carbon fiber reinforced plastics
carbon fiber–reinforced foams
Composite materials
Computed tomography
Damage
Digital imaging
Fatigue failure
Fatigue tests
foam
fracture mechanism
Fracture point
Matrix cracks
Plastic foam
Stiffness
stiffness reduction
Stress concentration
Tortuosity
Void fraction
title Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Properties%20of%20Carbon%20Fiber%E2%80%93Reinforced%20Foams%20and%20Experimental%20Observation%20of%20the%20Damage%20Growth%20Mechanism&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Sano,%20Ryuto&rft.date=2025-02&rft.volume=48&rft.issue=2&rft.spage=967&rft.epage=975&rft.pages=967-975&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.14518&rft_dat=%3Cproquest_cross%3E3155434464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155434464&rft_id=info:pmid/&rfr_iscdi=true