Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism
ABSTRACT Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the d...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2025-02, Vol.48 (2), p.967-975 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | 2 |
container_start_page | 967 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 48 |
creator | Sano, Ryuto Koga, Yuta Sato, Yusuke Kikuchi, Takuto Hosoi, Atsushi Kawahara, Kota Takebe, Yoshiki Kawada, Hiroyuki |
description | ABSTRACT
Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the digital image correlation (DIC) method, distinct stiffness reduction behavior was observed across the entire specimen and at the fracture points. The results suggest that local stiffness reduction behavior affects the fatigue properties. From the DIC method, damage was observed by scanning electron microscopy and the fiber tortuosity, and the void fraction were quantified using X‐ray computed tomography scans. In the case of three‐dimensional oriented fibers, stress was concentrated at fiber ends, fiber intersections, and bent fibers, resulting in fiber pull‐outs and matrix cracks. In the case of voids, the void size affected damage development, and the stress concentration around the voids caused fiber fracture and matrix cracks. |
doi_str_mv | 10.1111/ffe.14518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3155434464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155434464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1878-88c5a3a213f21ad16c4debf20e7335c2a538aa9a32dcdc9343bf153b23f204983</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSxrGduCMqTUEqKkIgsUUX59ymauPWTindeAfekCfBUFZuueX7_tP9hFyyuMfC9I3BHhOSqSPSYSKNoyQdyGPSUZlMo0yq11Ny5v0ijlkqOO-QTQ5tPdsifXR2ja6t0VNr6BBcaRua1yW6r4_PJ6wbY53GiuYWVp5CU9HRexDqFTYtLOm09OjeQlawgt_Okd7CCmZIx87u2jl9QD2Hpvarc3JiYOnx4m93yUs-eh7eRZPp-H54M4k0U5mKlNISOCSMm4RBxVItKixNEmPGudQJSK4ABsCTSld6wAUvDZO8TAIfi4HiXXJ1yF07u9mib4uF3bomnCw4k1JwIUIFXXJ9oLSz3js0xTr8BG5fsLj4abQIjRa_jQa2f2B39RL3_4NFno8Oxjed83kr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155434464</pqid></control><display><type>article</type><title>Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sano, Ryuto ; Koga, Yuta ; Sato, Yusuke ; Kikuchi, Takuto ; Hosoi, Atsushi ; Kawahara, Kota ; Takebe, Yoshiki ; Kawada, Hiroyuki</creator><creatorcontrib>Sano, Ryuto ; Koga, Yuta ; Sato, Yusuke ; Kikuchi, Takuto ; Hosoi, Atsushi ; Kawahara, Kota ; Takebe, Yoshiki ; Kawada, Hiroyuki</creatorcontrib><description>ABSTRACT
Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the digital image correlation (DIC) method, distinct stiffness reduction behavior was observed across the entire specimen and at the fracture points. The results suggest that local stiffness reduction behavior affects the fatigue properties. From the DIC method, damage was observed by scanning electron microscopy and the fiber tortuosity, and the void fraction were quantified using X‐ray computed tomography scans. In the case of three‐dimensional oriented fibers, stress was concentrated at fiber ends, fiber intersections, and bent fibers, resulting in fiber pull‐outs and matrix cracks. In the case of voids, the void size affected damage development, and the stress concentration around the voids caused fiber fracture and matrix cracks.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.14518</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Carbon fiber reinforced plastics ; carbon fiber–reinforced foams ; Composite materials ; Computed tomography ; Damage ; Digital imaging ; Fatigue failure ; Fatigue tests ; foam ; fracture mechanism ; Fracture point ; Matrix cracks ; Plastic foam ; Stiffness ; stiffness reduction ; Stress concentration ; Tortuosity ; Void fraction</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2025-02, Vol.48 (2), p.967-975</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2025 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1878-88c5a3a213f21ad16c4debf20e7335c2a538aa9a32dcdc9343bf153b23f204983</cites><orcidid>0000-0002-5245-0965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.14518$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.14518$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sano, Ryuto</creatorcontrib><creatorcontrib>Koga, Yuta</creatorcontrib><creatorcontrib>Sato, Yusuke</creatorcontrib><creatorcontrib>Kikuchi, Takuto</creatorcontrib><creatorcontrib>Hosoi, Atsushi</creatorcontrib><creatorcontrib>Kawahara, Kota</creatorcontrib><creatorcontrib>Takebe, Yoshiki</creatorcontrib><creatorcontrib>Kawada, Hiroyuki</creatorcontrib><title>Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism</title><title>Fatigue & fracture of engineering materials & structures</title><description>ABSTRACT
Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the digital image correlation (DIC) method, distinct stiffness reduction behavior was observed across the entire specimen and at the fracture points. The results suggest that local stiffness reduction behavior affects the fatigue properties. From the DIC method, damage was observed by scanning electron microscopy and the fiber tortuosity, and the void fraction were quantified using X‐ray computed tomography scans. In the case of three‐dimensional oriented fibers, stress was concentrated at fiber ends, fiber intersections, and bent fibers, resulting in fiber pull‐outs and matrix cracks. In the case of voids, the void size affected damage development, and the stress concentration around the voids caused fiber fracture and matrix cracks.</description><subject>Carbon fiber reinforced plastics</subject><subject>carbon fiber–reinforced foams</subject><subject>Composite materials</subject><subject>Computed tomography</subject><subject>Damage</subject><subject>Digital imaging</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>foam</subject><subject>fracture mechanism</subject><subject>Fracture point</subject><subject>Matrix cracks</subject><subject>Plastic foam</subject><subject>Stiffness</subject><subject>stiffness reduction</subject><subject>Stress concentration</subject><subject>Tortuosity</subject><subject>Void fraction</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjSxrGduCMqTUEqKkIgsUUX59ymauPWTindeAfekCfBUFZuueX7_tP9hFyyuMfC9I3BHhOSqSPSYSKNoyQdyGPSUZlMo0yq11Ny5v0ijlkqOO-QTQ5tPdsifXR2ja6t0VNr6BBcaRua1yW6r4_PJ6wbY53GiuYWVp5CU9HRexDqFTYtLOm09OjeQlawgt_Okd7CCmZIx87u2jl9QD2Hpvarc3JiYOnx4m93yUs-eh7eRZPp-H54M4k0U5mKlNISOCSMm4RBxVItKixNEmPGudQJSK4ABsCTSld6wAUvDZO8TAIfi4HiXXJ1yF07u9mib4uF3bomnCw4k1JwIUIFXXJ9oLSz3js0xTr8BG5fsLj4abQIjRa_jQa2f2B39RL3_4NFno8Oxjed83kr</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Sano, Ryuto</creator><creator>Koga, Yuta</creator><creator>Sato, Yusuke</creator><creator>Kikuchi, Takuto</creator><creator>Hosoi, Atsushi</creator><creator>Kawahara, Kota</creator><creator>Takebe, Yoshiki</creator><creator>Kawada, Hiroyuki</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5245-0965</orcidid></search><sort><creationdate>202502</creationdate><title>Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism</title><author>Sano, Ryuto ; Koga, Yuta ; Sato, Yusuke ; Kikuchi, Takuto ; Hosoi, Atsushi ; Kawahara, Kota ; Takebe, Yoshiki ; Kawada, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1878-88c5a3a213f21ad16c4debf20e7335c2a538aa9a32dcdc9343bf153b23f204983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Carbon fiber reinforced plastics</topic><topic>carbon fiber–reinforced foams</topic><topic>Composite materials</topic><topic>Computed tomography</topic><topic>Damage</topic><topic>Digital imaging</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>foam</topic><topic>fracture mechanism</topic><topic>Fracture point</topic><topic>Matrix cracks</topic><topic>Plastic foam</topic><topic>Stiffness</topic><topic>stiffness reduction</topic><topic>Stress concentration</topic><topic>Tortuosity</topic><topic>Void fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sano, Ryuto</creatorcontrib><creatorcontrib>Koga, Yuta</creatorcontrib><creatorcontrib>Sato, Yusuke</creatorcontrib><creatorcontrib>Kikuchi, Takuto</creatorcontrib><creatorcontrib>Hosoi, Atsushi</creatorcontrib><creatorcontrib>Kawahara, Kota</creatorcontrib><creatorcontrib>Takebe, Yoshiki</creatorcontrib><creatorcontrib>Kawada, Hiroyuki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sano, Ryuto</au><au>Koga, Yuta</au><au>Sato, Yusuke</au><au>Kikuchi, Takuto</au><au>Hosoi, Atsushi</au><au>Kawahara, Kota</au><au>Takebe, Yoshiki</au><au>Kawada, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2025-02</date><risdate>2025</risdate><volume>48</volume><issue>2</issue><spage>967</spage><epage>975</epage><pages>967-975</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>ABSTRACT
Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the digital image correlation (DIC) method, distinct stiffness reduction behavior was observed across the entire specimen and at the fracture points. The results suggest that local stiffness reduction behavior affects the fatigue properties. From the DIC method, damage was observed by scanning electron microscopy and the fiber tortuosity, and the void fraction were quantified using X‐ray computed tomography scans. In the case of three‐dimensional oriented fibers, stress was concentrated at fiber ends, fiber intersections, and bent fibers, resulting in fiber pull‐outs and matrix cracks. In the case of voids, the void size affected damage development, and the stress concentration around the voids caused fiber fracture and matrix cracks.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.14518</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5245-0965</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2025-02, Vol.48 (2), p.967-975 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_3155434464 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon fiber reinforced plastics carbon fiber–reinforced foams Composite materials Computed tomography Damage Digital imaging Fatigue failure Fatigue tests foam fracture mechanism Fracture point Matrix cracks Plastic foam Stiffness stiffness reduction Stress concentration Tortuosity Void fraction |
title | Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Properties%20of%20Carbon%20Fiber%E2%80%93Reinforced%20Foams%20and%20Experimental%20Observation%20of%20the%20Damage%20Growth%20Mechanism&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Sano,%20Ryuto&rft.date=2025-02&rft.volume=48&rft.issue=2&rft.spage=967&rft.epage=975&rft.pages=967-975&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.14518&rft_dat=%3Cproquest_cross%3E3155434464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155434464&rft_id=info:pmid/&rfr_iscdi=true |