Fatigue Properties of Carbon Fiber–Reinforced Foams and Experimental Observation of the Damage Growth Mechanism

ABSTRACT Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2025-02, Vol.48 (2), p.967-975
Hauptverfasser: Sano, Ryuto, Koga, Yuta, Sato, Yusuke, Kikuchi, Takuto, Hosoi, Atsushi, Kawahara, Kota, Takebe, Yoshiki, Kawada, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Carbon fiber–reinforced foams (CFRFs) are expanded thermoplastic composite materials reinforced with three‐dimensional discontinuous carbon fibers. Herein, the effects of their unique internal structure on fatigue properties were investigated. Through tension‐tension fatigue tests and the digital image correlation (DIC) method, distinct stiffness reduction behavior was observed across the entire specimen and at the fracture points. The results suggest that local stiffness reduction behavior affects the fatigue properties. From the DIC method, damage was observed by scanning electron microscopy and the fiber tortuosity, and the void fraction were quantified using X‐ray computed tomography scans. In the case of three‐dimensional oriented fibers, stress was concentrated at fiber ends, fiber intersections, and bent fibers, resulting in fiber pull‐outs and matrix cracks. In the case of voids, the void size affected damage development, and the stress concentration around the voids caused fiber fracture and matrix cracks.
ISSN:8756-758X
1460-2695
DOI:10.1111/ffe.14518