Zero‐Hopf bifurcation of a cubic jerk system via the third order averaging method

This paper is devoted to analyze the zero‐Hopf bifurcation of a generalized three‐dimensional (3D) jerk system, the jerk function of this system has all quadratic and cubic terms. Due to the averaging method of second order, we show that at most three periodic orbits bifurcate form the zero‐Hopf equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2025-02, Vol.48 (3), p.3595-3604
1. Verfasser: Chen, Yu‐Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to analyze the zero‐Hopf bifurcation of a generalized three‐dimensional (3D) jerk system, the jerk function of this system has all quadratic and cubic terms. Due to the averaging method of second order, we show that at most three periodic orbits bifurcate form the zero‐Hopf equilibrium point of this jerk system, and this upper bound is sharp. Furthermore, by using the averaging method of third order, we show that three is also the maximal number of periodic orbits bifurcate from this zero‐Hopf equilibrium point. Finally, the numerical method is used to justify the theoretical analysis.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.10503