Dynamics Modeling Dedicated to the Operation and Control of Underwater Vehicles
The paper addresses the dynamics modeling of underwater vehicles that are inertia propelled, i.e., they can move based upon the change of the amount of water in their water tanks and the motion of an internal mass, enabling maneuvers. Underwater vehicles of this type can be successfully applied in o...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2025-01, Vol.14 (1), p.195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper addresses the dynamics modeling of underwater vehicles that are inertia propelled, i.e., they can move based upon the change of the amount of water in their water tanks and the motion of an internal mass, enabling maneuvers. Underwater vehicles of this type can be successfully applied in ocean scientific reconnaissance and exploration missions or for water pollution monitoring. Usually, dynamics modeling methods for them are based upon the Newton–Euler or Lagrange approaches modified to encompass variable mass. The main motivation of this research is to explore other modeling methods and compare them to those traditionally used. In this paper, modeling methods based on the Maggi and Boltzmann–Hamel approaches are presented and discussed with respect to their effectiveness in modeling, operation, and control applications. The resulting comparisons indicate that the traditional approaches are sufficient for the analysis of vehicle operation and performance in the realization of simple tasks; however, they become of limited application when the variable mass or constraints on vehicle dynamics or motion are added or complex maneuvers are required. In this regard, the Maggi or Boltzmann–Hamel approaches are more effective for dynamics modeling. The theoretical development is illustrated by examples of vehicle dynamics developed using the approaches we propose. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics14010195 |