Elucidating the Underlying Allelopathy Effects of Euphorbia jolkinii on Arundinella hookeri Using Metabolomics Profiling
dominates the subalpine meadows in Shangri-La (Southwest China) owing to its potent allelopathic effects. However, the effects underlying its allelopathy require further characterization at the physiological and molecular levels. In this study, the physiological, biochemical, and metabolic mechanism...
Gespeichert in:
Veröffentlicht in: | Plants (Basel) 2025-01, Vol.14 (1), p.123 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | dominates the subalpine meadows in Shangri-La (Southwest China) owing to its potent allelopathic effects. However, the effects underlying its allelopathy require further characterization at the physiological and molecular levels. In this study, the physiological, biochemical, and metabolic mechanisms underlying
allelopathy were investigated using
as a receptor plant. The treatment of
seedlings with
aqueous extract (EJAE) disrupted their growth by inhibiting photosynthesis, disrupting oxidation systems, and increasing soluble sugar accumulation and chlorophyll synthesis. Collectively, this causes severe impairment accompanied by abnormal photosynthesis and reduced biomass accumulation. Moreover, EJAE treatment suppressed gibberellin, indoleacetic acid, zeatin, salicylic acid, and jasmonic acid levels while promoting abscisic acid accumulation. Further metabolomic analyses identified numerous differentially abundant metabolites primarily enriched in the α-linolenic, phenylpropanoid, and flavonoid biosynthesis pathways in EJAE-treated
seedlings. This study demonstrated that
exhibits potent and comprehensive allelopathic effects on receptor plants, including a significant disruption of endogenous hormone synthesis, the inhibition of photosynthesis, an impairment of membrane and oxidation systems, and changes in crucial metabolic processes associated with α-linolenic, phenylpropanoid, and flavonoid biosynthesis. Thus, our study provides a solid theoretical foundation for understanding the regulatory mechanisms underlying
allelopathy. |
---|---|
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants14010123 |