Strong approximation of special functions of bounded variation functions with prescribed jump direction

In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2025-01, Vol.298 (1), p.312-327
Hauptverfasser: Lazzaroni, Giuliano, Wozniak, Piotr, Zeppieri, Caterina Ida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 1
container_start_page 312
container_title Mathematische Nachrichten
container_volume 298
creator Lazzaroni, Giuliano
Wozniak, Piotr
Zeppieri, Caterina Ida
description In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set.
doi_str_mv 10.1002/mana.202300346
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3152768920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152768920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2426-cbd24e951dbf454a44d4a1893724062cfc069d5e93d1975020613a45de6b587c3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMkdiTjk7thOPVcWXVGAAJDbLsZ3iqk2CnVD63-MQBCPTSe9-707vIXSOYYYByOVW1WpGgGQAGeUHaIIZISnhmB-iSQRYygr6eoxOQlgDgBA5n6DVU-ebepWotvXNp9uqzjV10lRJaK12apNUfa0HLQxi2fS1sSb5UN6N5N9657q3pPU2aO_KyKz7bZsY5-33_hQdVWoT7NnPnKKX66vnxW26fLy5W8yXqSaU8FSXhlArGDZlRRlVlBqqcCGynFDgRFcauDDMisxgkTMgwHGmKDOWl6zIdTZFF-PdGOe9t6GT66b3dXwps9hHzgtBIFKzkdK-CcHbSrY-Zvd7iUEOZcqhTPlbZjSI0bBzG7v_h5b384f5n_cLcEJ6PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152768920</pqid></control><display><type>article</type><title>Strong approximation of special functions of bounded variation functions with prescribed jump direction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lazzaroni, Giuliano ; Wozniak, Piotr ; Zeppieri, Caterina Ida</creator><creatorcontrib>Lazzaroni, Giuliano ; Wozniak, Piotr ; Zeppieri, Caterina Ida</creatorcontrib><description>In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202300346</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Approximation ; Free‐discontinuity problems ; Orthogonality ; Prescribed jump direction ; SBV‐functions</subject><ispartof>Mathematische Nachrichten, 2025-01, Vol.298 (1), p.312-327</ispartof><rights>2024 The Author(s). published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2426-cbd24e951dbf454a44d4a1893724062cfc069d5e93d1975020613a45de6b587c3</cites><orcidid>0000-0002-3196-6372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.202300346$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.202300346$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lazzaroni, Giuliano</creatorcontrib><creatorcontrib>Wozniak, Piotr</creatorcontrib><creatorcontrib>Zeppieri, Caterina Ida</creatorcontrib><title>Strong approximation of special functions of bounded variation functions with prescribed jump direction</title><title>Mathematische Nachrichten</title><description>In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Free‐discontinuity problems</subject><subject>Orthogonality</subject><subject>Prescribed jump direction</subject><subject>SBV‐functions</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkL1PwzAQxS0EEqWwMkdiTjk7thOPVcWXVGAAJDbLsZ3iqk2CnVD63-MQBCPTSe9-707vIXSOYYYByOVW1WpGgGQAGeUHaIIZISnhmB-iSQRYygr6eoxOQlgDgBA5n6DVU-ebepWotvXNp9uqzjV10lRJaK12apNUfa0HLQxi2fS1sSb5UN6N5N9657q3pPU2aO_KyKz7bZsY5-33_hQdVWoT7NnPnKKX66vnxW26fLy5W8yXqSaU8FSXhlArGDZlRRlVlBqqcCGynFDgRFcauDDMisxgkTMgwHGmKDOWl6zIdTZFF-PdGOe9t6GT66b3dXwps9hHzgtBIFKzkdK-CcHbSrY-Zvd7iUEOZcqhTPlbZjSI0bBzG7v_h5b384f5n_cLcEJ6PA</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Lazzaroni, Giuliano</creator><creator>Wozniak, Piotr</creator><creator>Zeppieri, Caterina Ida</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3196-6372</orcidid></search><sort><creationdate>202501</creationdate><title>Strong approximation of special functions of bounded variation functions with prescribed jump direction</title><author>Lazzaroni, Giuliano ; Wozniak, Piotr ; Zeppieri, Caterina Ida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2426-cbd24e951dbf454a44d4a1893724062cfc069d5e93d1975020613a45de6b587c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Free‐discontinuity problems</topic><topic>Orthogonality</topic><topic>Prescribed jump direction</topic><topic>SBV‐functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazzaroni, Giuliano</creatorcontrib><creatorcontrib>Wozniak, Piotr</creatorcontrib><creatorcontrib>Zeppieri, Caterina Ida</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazzaroni, Giuliano</au><au>Wozniak, Piotr</au><au>Zeppieri, Caterina Ida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong approximation of special functions of bounded variation functions with prescribed jump direction</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2025-01</date><risdate>2025</risdate><volume>298</volume><issue>1</issue><spage>312</spage><epage>327</epage><pages>312-327</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202300346</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3196-6372</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2025-01, Vol.298 (1), p.312-327
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_3152768920
source Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
Approximation
Free‐discontinuity problems
Orthogonality
Prescribed jump direction
SBV‐functions
title Strong approximation of special functions of bounded variation functions with prescribed jump direction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20approximation%20of%20special%20functions%20of%20bounded%20variation%20functions%20with%20prescribed%20jump%20direction&rft.jtitle=Mathematische%20Nachrichten&rft.au=Lazzaroni,%20Giuliano&rft.date=2025-01&rft.volume=298&rft.issue=1&rft.spage=312&rft.epage=327&rft.pages=312-327&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202300346&rft_dat=%3Cproquest_cross%3E3152768920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152768920&rft_id=info:pmid/&rfr_iscdi=true