Strong approximation of special functions of bounded variation functions with prescribed jump direction
In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves th...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2025-01, Vol.298 (1), p.312-327 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | 1 |
container_start_page | 312 |
container_title | Mathematische Nachrichten |
container_volume | 298 |
creator | Lazzaroni, Giuliano Wozniak, Piotr Zeppieri, Caterina Ida |
description | In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set. |
doi_str_mv | 10.1002/mana.202300346 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3152768920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152768920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2426-cbd24e951dbf454a44d4a1893724062cfc069d5e93d1975020613a45de6b587c3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMkdiTjk7thOPVcWXVGAAJDbLsZ3iqk2CnVD63-MQBCPTSe9-707vIXSOYYYByOVW1WpGgGQAGeUHaIIZISnhmB-iSQRYygr6eoxOQlgDgBA5n6DVU-ebepWotvXNp9uqzjV10lRJaK12apNUfa0HLQxi2fS1sSb5UN6N5N9657q3pPU2aO_KyKz7bZsY5-33_hQdVWoT7NnPnKKX66vnxW26fLy5W8yXqSaU8FSXhlArGDZlRRlVlBqqcCGynFDgRFcauDDMisxgkTMgwHGmKDOWl6zIdTZFF-PdGOe9t6GT66b3dXwps9hHzgtBIFKzkdK-CcHbSrY-Zvd7iUEOZcqhTPlbZjSI0bBzG7v_h5b384f5n_cLcEJ6PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152768920</pqid></control><display><type>article</type><title>Strong approximation of special functions of bounded variation functions with prescribed jump direction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lazzaroni, Giuliano ; Wozniak, Piotr ; Zeppieri, Caterina Ida</creator><creatorcontrib>Lazzaroni, Giuliano ; Wozniak, Piotr ; Zeppieri, Caterina Ida</creatorcontrib><description>In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202300346</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Approximation ; Free‐discontinuity problems ; Orthogonality ; Prescribed jump direction ; SBV‐functions</subject><ispartof>Mathematische Nachrichten, 2025-01, Vol.298 (1), p.312-327</ispartof><rights>2024 The Author(s). published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2426-cbd24e951dbf454a44d4a1893724062cfc069d5e93d1975020613a45de6b587c3</cites><orcidid>0000-0002-3196-6372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.202300346$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.202300346$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lazzaroni, Giuliano</creatorcontrib><creatorcontrib>Wozniak, Piotr</creatorcontrib><creatorcontrib>Zeppieri, Caterina Ida</creatorcontrib><title>Strong approximation of special functions of bounded variation functions with prescribed jump direction</title><title>Mathematische Nachrichten</title><description>In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Free‐discontinuity problems</subject><subject>Orthogonality</subject><subject>Prescribed jump direction</subject><subject>SBV‐functions</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkL1PwzAQxS0EEqWwMkdiTjk7thOPVcWXVGAAJDbLsZ3iqk2CnVD63-MQBCPTSe9-707vIXSOYYYByOVW1WpGgGQAGeUHaIIZISnhmB-iSQRYygr6eoxOQlgDgBA5n6DVU-ebepWotvXNp9uqzjV10lRJaK12apNUfa0HLQxi2fS1sSb5UN6N5N9657q3pPU2aO_KyKz7bZsY5-33_hQdVWoT7NnPnKKX66vnxW26fLy5W8yXqSaU8FSXhlArGDZlRRlVlBqqcCGynFDgRFcauDDMisxgkTMgwHGmKDOWl6zIdTZFF-PdGOe9t6GT66b3dXwps9hHzgtBIFKzkdK-CcHbSrY-Zvd7iUEOZcqhTPlbZjSI0bBzG7v_h5b384f5n_cLcEJ6PA</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Lazzaroni, Giuliano</creator><creator>Wozniak, Piotr</creator><creator>Zeppieri, Caterina Ida</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3196-6372</orcidid></search><sort><creationdate>202501</creationdate><title>Strong approximation of special functions of bounded variation functions with prescribed jump direction</title><author>Lazzaroni, Giuliano ; Wozniak, Piotr ; Zeppieri, Caterina Ida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2426-cbd24e951dbf454a44d4a1893724062cfc069d5e93d1975020613a45de6b587c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Free‐discontinuity problems</topic><topic>Orthogonality</topic><topic>Prescribed jump direction</topic><topic>SBV‐functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazzaroni, Giuliano</creatorcontrib><creatorcontrib>Wozniak, Piotr</creatorcontrib><creatorcontrib>Zeppieri, Caterina Ida</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazzaroni, Giuliano</au><au>Wozniak, Piotr</au><au>Zeppieri, Caterina Ida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong approximation of special functions of bounded variation functions with prescribed jump direction</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2025-01</date><risdate>2025</risdate><volume>298</volume><issue>1</issue><spage>312</spage><epage>327</epage><pages>312-327</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202300346</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3196-6372</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2025-01, Vol.298 (1), p.312-327 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_3152768920 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anisotropy Approximation Free‐discontinuity problems Orthogonality Prescribed jump direction SBV‐functions |
title | Strong approximation of special functions of bounded variation functions with prescribed jump direction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20approximation%20of%20special%20functions%20of%20bounded%20variation%20functions%20with%20prescribed%20jump%20direction&rft.jtitle=Mathematische%20Nachrichten&rft.au=Lazzaroni,%20Giuliano&rft.date=2025-01&rft.volume=298&rft.issue=1&rft.spage=312&rft.epage=327&rft.pages=312-327&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202300346&rft_dat=%3Cproquest_cross%3E3152768920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152768920&rft_id=info:pmid/&rfr_iscdi=true |