Strong approximation of special functions of bounded variation functions with prescribed jump direction

In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2025-01, Vol.298 (1), p.312-327
Hauptverfasser: Lazzaroni, Giuliano, Wozniak, Piotr, Zeppieri, Caterina Ida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202300346