Strong approximation of special functions of bounded variation functions with prescribed jump direction
In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves th...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2025-01, Vol.298 (1), p.312-327 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we show that special functions of bounded variation (SBV)$\mathrm{SBV)}$ functions with jump normal lying in a prescribed set of directions N$\mathcal {N}$ can be approximated by sequences of SBV$\mathrm{SBV}$ functions whose jump set is essentially closed, polyhedral, and preserves the orthogonality to N$\mathcal {N}$, moreover the functions are smooth away from their jump set. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202300346 |