Symbolic dynamics for pointwise hyperbolic systems on open regions

Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$ , which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2025-02, Vol.45 (2), p.595-648
Hauptverfasser: WU, CHUPENG, ZHOU, YUNHUA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 2
container_start_page 595
container_title Ergodic theory and dynamical systems
container_volume 45
creator WU, CHUPENG
ZHOU, YUNHUA
description Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$ , which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.
doi_str_mv 10.1017/etds.2024.47
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3152471288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2024_47</cupid><sourcerecordid>3152471288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-d08eef6e44a52999eb5cf89f8c53b2c70f989610e6824593f5c5b6b01af517f33</originalsourceid><addsrcrecordid>eNptkEtLAzEYRYMoWKs7f0DArTPmOUmWWnxBwYW6DjOZLzWlMxmTKTL_3pYW3Li6m3PvhYPQNSUlJVTdwdjmkhEmSqFO0IyKyhRCUHWKZoQKXnAt1Tm6yHlNCOFUyRl6eJ-6Jm6Cw-3U111wGfuY8BBDP_6EDPhrGiAdiDzlEbqMY4_jAD1OsAqxz5fozNebDFfHnKPPp8ePxUuxfHt-XdwvC0e1GYuWaABfgRC1ZMYYaKTz2njtJG-YU8QbbSpKoNJMSMO9dLKpGkJrL6nynM_RzWF3SPF7C3m067hN_e7SciqZUJRpvaNuD5RLMecE3g4pdHWaLCV2b8nuLdm9JSvUDi-PeN01KbQr-Fv9t_ALeoxqlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152471288</pqid></control><display><type>article</type><title>Symbolic dynamics for pointwise hyperbolic systems on open regions</title><source>Cambridge University Press Journals Complete</source><creator>WU, CHUPENG ; ZHOU, YUNHUA</creator><creatorcontrib>WU, CHUPENG ; ZHOU, YUNHUA</creatorcontrib><description>Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$ , which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2024.47</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Estimates ; Euclidean space ; Hyperbolic systems ; Invariants ; Isomorphism ; Liapunov exponents ; Orbits ; Original Article</subject><ispartof>Ergodic theory and dynamical systems, 2025-02, Vol.45 (2), p.595-648</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-d08eef6e44a52999eb5cf89f8c53b2c70f989610e6824593f5c5b6b01af517f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385724000476/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>WU, CHUPENG</creatorcontrib><creatorcontrib>ZHOU, YUNHUA</creatorcontrib><title>Symbolic dynamics for pointwise hyperbolic systems on open regions</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$ , which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.</description><subject>Estimates</subject><subject>Euclidean space</subject><subject>Hyperbolic systems</subject><subject>Invariants</subject><subject>Isomorphism</subject><subject>Liapunov exponents</subject><subject>Orbits</subject><subject>Original Article</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEYRYMoWKs7f0DArTPmOUmWWnxBwYW6DjOZLzWlMxmTKTL_3pYW3Li6m3PvhYPQNSUlJVTdwdjmkhEmSqFO0IyKyhRCUHWKZoQKXnAt1Tm6yHlNCOFUyRl6eJ-6Jm6Cw-3U111wGfuY8BBDP_6EDPhrGiAdiDzlEbqMY4_jAD1OsAqxz5fozNebDFfHnKPPp8ePxUuxfHt-XdwvC0e1GYuWaABfgRC1ZMYYaKTz2njtJG-YU8QbbSpKoNJMSMO9dLKpGkJrL6nynM_RzWF3SPF7C3m067hN_e7SciqZUJRpvaNuD5RLMecE3g4pdHWaLCV2b8nuLdm9JSvUDi-PeN01KbQr-Fv9t_ALeoxqlA</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>WU, CHUPENG</creator><creator>ZHOU, YUNHUA</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202502</creationdate><title>Symbolic dynamics for pointwise hyperbolic systems on open regions</title><author>WU, CHUPENG ; ZHOU, YUNHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-d08eef6e44a52999eb5cf89f8c53b2c70f989610e6824593f5c5b6b01af517f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Estimates</topic><topic>Euclidean space</topic><topic>Hyperbolic systems</topic><topic>Invariants</topic><topic>Isomorphism</topic><topic>Liapunov exponents</topic><topic>Orbits</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WU, CHUPENG</creatorcontrib><creatorcontrib>ZHOU, YUNHUA</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WU, CHUPENG</au><au>ZHOU, YUNHUA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbolic dynamics for pointwise hyperbolic systems on open regions</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2025-02</date><risdate>2025</risdate><volume>45</volume><issue>2</issue><spage>595</spage><epage>648</epage><pages>595-648</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$ , which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2024.47</doi><tpages>54</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2025-02, Vol.45 (2), p.595-648
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_3152471288
source Cambridge University Press Journals Complete
subjects Estimates
Euclidean space
Hyperbolic systems
Invariants
Isomorphism
Liapunov exponents
Orbits
Original Article
title Symbolic dynamics for pointwise hyperbolic systems on open regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbolic%20dynamics%20for%20pointwise%20hyperbolic%20systems%20on%20open%20regions&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=WU,%20CHUPENG&rft.date=2025-02&rft.volume=45&rft.issue=2&rft.spage=595&rft.epage=648&rft.pages=595-648&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2024.47&rft_dat=%3Cproquest_cross%3E3152471288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152471288&rft_id=info:pmid/&rft_cupid=10_1017_etds_2024_47&rfr_iscdi=true