Symbolic dynamics for pointwise hyperbolic systems on open regions
Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$ , which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2025-02, Vol.45 (2), p.595-648 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism
$f:M\rightarrow M$
on an open invariant subset
$O\subset M$
, which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2024.47 |