Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets
We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we firs...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2025-01, Vol.391 (1), p.1199-1252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1252 |
---|---|
container_issue | 1 |
container_start_page | 1199 |
container_title | Mathematische annalen |
container_volume | 391 |
creator | Armstrong, Gavin Bogdan, Krzysztof Rutkowski, Artur |
description | We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary. |
doi_str_mv | 10.1007/s00208-024-02931-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3151858351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151858351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7da73436e0c12f43ef382275f72d0a38377ab659ec44db492478a7fdb2cb42e3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKt_wFPAc3Ty1aRHKX7BgpdeJWSziU1ZkzXZPdRf79p6GOYwDy_zPgjdUrinAOqhAjDQBJiYZ80p0WdoQQVnhGpQ52gx3yWRmtNLdFXrHgA4gFygj43tc4kOhym5MeZUsU0dbvOUOlsOuPjPqbcljgcccsHjzuNQ7JG0PW7s0FsXbcIx4SYO1e3i-IPz4BOufqzX6CLYvvqb_71E2-en7eaVNO8vb5vHhjgGMBLVWcUFX3lwlAXBfeCaMSWDYh1YrrlStl3JtXdCdK1YM6G0VaFrmWsF83yJ7k6xQ8nfk6-j2eepzA9Ww6mkeu4t6UyxE-VKrrX4YIYSv-aShoL5s2hOFs1s0RwtGs1_AXmzZbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151858351</pqid></control><display><type>article</type><title>Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Armstrong, Gavin ; Bogdan, Krzysztof ; Rutkowski, Artur</creator><creatorcontrib>Armstrong, Gavin ; Bogdan, Krzysztof ; Rutkowski, Artur</creatorcontrib><description>We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-024-02931-8</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Green's functions ; Poisson equation ; Regularity ; Representations ; Stochastic processes ; Thermodynamics</subject><ispartof>Mathematische annalen, 2025-01, Vol.391 (1), p.1199-1252</ispartof><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7da73436e0c12f43ef382275f72d0a38377ab659ec44db492478a7fdb2cb42e3</cites><orcidid>0000-0002-6466-2105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Armstrong, Gavin</creatorcontrib><creatorcontrib>Bogdan, Krzysztof</creatorcontrib><creatorcontrib>Rutkowski, Artur</creatorcontrib><title>Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets</title><title>Mathematische annalen</title><description>We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary.</description><subject>Green's functions</subject><subject>Poisson equation</subject><subject>Regularity</subject><subject>Representations</subject><subject>Stochastic processes</subject><subject>Thermodynamics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKt_wFPAc3Ty1aRHKX7BgpdeJWSziU1ZkzXZPdRf79p6GOYwDy_zPgjdUrinAOqhAjDQBJiYZ80p0WdoQQVnhGpQ52gx3yWRmtNLdFXrHgA4gFygj43tc4kOhym5MeZUsU0dbvOUOlsOuPjPqbcljgcccsHjzuNQ7JG0PW7s0FsXbcIx4SYO1e3i-IPz4BOufqzX6CLYvvqb_71E2-en7eaVNO8vb5vHhjgGMBLVWcUFX3lwlAXBfeCaMSWDYh1YrrlStl3JtXdCdK1YM6G0VaFrmWsF83yJ7k6xQ8nfk6-j2eepzA9Ww6mkeu4t6UyxE-VKrrX4YIYSv-aShoL5s2hOFs1s0RwtGs1_AXmzZbA</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Armstrong, Gavin</creator><creator>Bogdan, Krzysztof</creator><creator>Rutkowski, Artur</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6466-2105</orcidid></search><sort><creationdate>202501</creationdate><title>Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets</title><author>Armstrong, Gavin ; Bogdan, Krzysztof ; Rutkowski, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7da73436e0c12f43ef382275f72d0a38377ab659ec44db492478a7fdb2cb42e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Green's functions</topic><topic>Poisson equation</topic><topic>Regularity</topic><topic>Representations</topic><topic>Stochastic processes</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, Gavin</creatorcontrib><creatorcontrib>Bogdan, Krzysztof</creatorcontrib><creatorcontrib>Rutkowski, Artur</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armstrong, Gavin</au><au>Bogdan, Krzysztof</au><au>Rutkowski, Artur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets</atitle><jtitle>Mathematische annalen</jtitle><date>2025-01</date><risdate>2025</risdate><volume>391</volume><issue>1</issue><spage>1199</spage><epage>1252</epage><pages>1199-1252</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00208-024-02931-8</doi><tpages>54</tpages><orcidid>https://orcid.org/0000-0002-6466-2105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2025-01, Vol.391 (1), p.1199-1252 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_3151858351 |
source | SpringerLink Journals - AutoHoldings |
subjects | Green's functions Poisson equation Regularity Representations Stochastic processes Thermodynamics |
title | Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caloric%20functions%20and%20boundary%20regularity%20for%20the%20fractional%20Laplacian%20in%20Lipschitz%20open%20sets&rft.jtitle=Mathematische%20annalen&rft.au=Armstrong,%20Gavin&rft.date=2025-01&rft.volume=391&rft.issue=1&rft.spage=1199&rft.epage=1252&rft.pages=1199-1252&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-024-02931-8&rft_dat=%3Cproquest_cross%3E3151858351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151858351&rft_id=info:pmid/&rfr_iscdi=true |