Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets

We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2025-01, Vol.391 (1), p.1199-1252
Hauptverfasser: Armstrong, Gavin, Bogdan, Krzysztof, Rutkowski, Artur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1252
container_issue 1
container_start_page 1199
container_title Mathematische annalen
container_volume 391
creator Armstrong, Gavin
Bogdan, Krzysztof
Rutkowski, Artur
description We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary.
doi_str_mv 10.1007/s00208-024-02931-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3151858351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151858351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7da73436e0c12f43ef382275f72d0a38377ab659ec44db492478a7fdb2cb42e3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKt_wFPAc3Ty1aRHKX7BgpdeJWSziU1ZkzXZPdRf79p6GOYwDy_zPgjdUrinAOqhAjDQBJiYZ80p0WdoQQVnhGpQ52gx3yWRmtNLdFXrHgA4gFygj43tc4kOhym5MeZUsU0dbvOUOlsOuPjPqbcljgcccsHjzuNQ7JG0PW7s0FsXbcIx4SYO1e3i-IPz4BOufqzX6CLYvvqb_71E2-en7eaVNO8vb5vHhjgGMBLVWcUFX3lwlAXBfeCaMSWDYh1YrrlStl3JtXdCdK1YM6G0VaFrmWsF83yJ7k6xQ8nfk6-j2eepzA9Ww6mkeu4t6UyxE-VKrrX4YIYSv-aShoL5s2hOFs1s0RwtGs1_AXmzZbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151858351</pqid></control><display><type>article</type><title>Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Armstrong, Gavin ; Bogdan, Krzysztof ; Rutkowski, Artur</creator><creatorcontrib>Armstrong, Gavin ; Bogdan, Krzysztof ; Rutkowski, Artur</creatorcontrib><description>We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-024-02931-8</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Green's functions ; Poisson equation ; Regularity ; Representations ; Stochastic processes ; Thermodynamics</subject><ispartof>Mathematische annalen, 2025-01, Vol.391 (1), p.1199-1252</ispartof><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7da73436e0c12f43ef382275f72d0a38377ab659ec44db492478a7fdb2cb42e3</cites><orcidid>0000-0002-6466-2105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Armstrong, Gavin</creatorcontrib><creatorcontrib>Bogdan, Krzysztof</creatorcontrib><creatorcontrib>Rutkowski, Artur</creatorcontrib><title>Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets</title><title>Mathematische annalen</title><description>We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary.</description><subject>Green's functions</subject><subject>Poisson equation</subject><subject>Regularity</subject><subject>Representations</subject><subject>Stochastic processes</subject><subject>Thermodynamics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKt_wFPAc3Ty1aRHKX7BgpdeJWSziU1ZkzXZPdRf79p6GOYwDy_zPgjdUrinAOqhAjDQBJiYZ80p0WdoQQVnhGpQ52gx3yWRmtNLdFXrHgA4gFygj43tc4kOhym5MeZUsU0dbvOUOlsOuPjPqbcljgcccsHjzuNQ7JG0PW7s0FsXbcIx4SYO1e3i-IPz4BOufqzX6CLYvvqb_71E2-en7eaVNO8vb5vHhjgGMBLVWcUFX3lwlAXBfeCaMSWDYh1YrrlStl3JtXdCdK1YM6G0VaFrmWsF83yJ7k6xQ8nfk6-j2eepzA9Ww6mkeu4t6UyxE-VKrrX4YIYSv-aShoL5s2hOFs1s0RwtGs1_AXmzZbA</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Armstrong, Gavin</creator><creator>Bogdan, Krzysztof</creator><creator>Rutkowski, Artur</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6466-2105</orcidid></search><sort><creationdate>202501</creationdate><title>Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets</title><author>Armstrong, Gavin ; Bogdan, Krzysztof ; Rutkowski, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7da73436e0c12f43ef382275f72d0a38377ab659ec44db492478a7fdb2cb42e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Green's functions</topic><topic>Poisson equation</topic><topic>Regularity</topic><topic>Representations</topic><topic>Stochastic processes</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, Gavin</creatorcontrib><creatorcontrib>Bogdan, Krzysztof</creatorcontrib><creatorcontrib>Rutkowski, Artur</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armstrong, Gavin</au><au>Bogdan, Krzysztof</au><au>Rutkowski, Artur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets</atitle><jtitle>Mathematische annalen</jtitle><date>2025-01</date><risdate>2025</risdate><volume>391</volume><issue>1</issue><spage>1199</spage><epage>1252</epage><pages>1199-1252</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00208-024-02931-8</doi><tpages>54</tpages><orcidid>https://orcid.org/0000-0002-6466-2105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2025-01, Vol.391 (1), p.1199-1252
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_3151858351
source SpringerLink Journals - AutoHoldings
subjects Green's functions
Poisson equation
Regularity
Representations
Stochastic processes
Thermodynamics
title Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caloric%20functions%20and%20boundary%20regularity%20for%20the%20fractional%20Laplacian%20in%20Lipschitz%20open%20sets&rft.jtitle=Mathematische%20annalen&rft.au=Armstrong,%20Gavin&rft.date=2025-01&rft.volume=391&rft.issue=1&rft.spage=1199&rft.epage=1252&rft.pages=1199-1252&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-024-02931-8&rft_dat=%3Cproquest_cross%3E3151858351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151858351&rft_id=info:pmid/&rfr_iscdi=true