Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets
We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we firs...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2025-01, Vol.391 (1), p.1199-1252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-024-02931-8 |