Caloric functions and boundary regularity for the fractional Laplacian in Lipschitz open sets

We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2025-01, Vol.391 (1), p.1199-1252
Hauptverfasser: Armstrong, Gavin, Bogdan, Krzysztof, Rutkowski, Artur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$ α -stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-024-02931-8