On the feasibility of retrieving the temporal gravity field via improved optical clocks
The development of optical clocks has experienced significant acceleration in recent years, positioning them as one of the most promising quantum optical sensors for next-generation gravimetric missions (NGGMs). This study investigates the feasibility of retrieving the temporal gravity field via imp...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2025, Vol.99 (1), Article 7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of geodesy |
container_volume | 99 |
creator | Zheng, Shuyun Zhou, Hao Ma, Zhiyu Guo, Xiang Luo, Zhicai |
description | The development of optical clocks has experienced significant acceleration in recent years, positioning them as one of the most promising quantum optical sensors for next-generation gravimetric missions (NGGMs). This study investigates the feasibility of retrieving the temporal gravity field via improved optical clocks through a closed-loop simulation. It evaluates optical clock capabilities in temporal gravity field inversion by considering the clock noise characteristics, designing satellite formations, and simulating the performance of optical clocks. The results indicate that optical clocks exhibit higher sensitivity to low-degree gravity field signals. However, when the optical clock noise level drops below 1 × 10
−19
/
τ
(τ being the averaging time in seconds) in the satellite-to-ground (SG) mode or below 1 × 10
−20
/
τ
in the satellite-to-satellite (SS) mode, atmospheric and oceanic (AO) errors become the dominant source of error. At this noise level, optical clocks can detect time-variable gravity signals up to approximately degree 30. Compared to existing gravity measurement missions such as GRACE-FO, optical clocks exhibit consistent results in detecting signals below degree 20. If the orbital altitude is reduced to 250 km, the performance of optical clocks across all degrees aligns with the results of GRACE-FO. Furthermore, the study reveals that lowering the orbital altitude of satellite-based optical clocks from 485 to 250 km improves results by an average of 33%. Switching from the SS mode to the SG mode results in an average improvement of 51%, while each order-of-magnitude improvement in clock precision enhances results by an average of 60%. In summary, these findings highlight the tremendous potential of optical clock technology in determining Earth’s temporal gravity field and provide crucial technological support for NGGMs. |
doi_str_mv | 10.1007/s00190-024-01930-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3151427312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151427312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-8e1557914c6801500638460f2f8929ae6601d281683e84dbdfc7d81a1ce0afe33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZJE3Toyx-gbAXxWPItsmatdvWpFvYf292K3jzNAPzvDPDQ8g1wi0CFHcRAEugwARNDQcqT8gMBWcUeSlOyQxKUdKiQHFOLmLcJLzIlZyRj2WbDZ82c9ZEv_KNH_ZZ57Jgh-Dt6Nv1cTrYbd8F02TrYMYD4rxt6mz0JvPbPnSjrbOuH3yVkKrpqq94Sc6caaK9-q1z8v748LZ4pq_Lp5fF_SutGMBAlcU8L0oUlVSAOYDkSkhwzKmSlcZKCVgzhVJxq0S9ql1V1AoNVhaMs5zPyc20N33xvbNx0JtuF9p0UnPMUbCCI0sUm6gqdDEG63Qf_NaEvUbQB4F6EqiTQH0UqGUK8SkUE9yubfhb_U_qB2yDcvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151427312</pqid></control><display><type>article</type><title>On the feasibility of retrieving the temporal gravity field via improved optical clocks</title><source>SpringerLink (Online service)</source><creator>Zheng, Shuyun ; Zhou, Hao ; Ma, Zhiyu ; Guo, Xiang ; Luo, Zhicai</creator><creatorcontrib>Zheng, Shuyun ; Zhou, Hao ; Ma, Zhiyu ; Guo, Xiang ; Luo, Zhicai</creatorcontrib><description>The development of optical clocks has experienced significant acceleration in recent years, positioning them as one of the most promising quantum optical sensors for next-generation gravimetric missions (NGGMs). This study investigates the feasibility of retrieving the temporal gravity field via improved optical clocks through a closed-loop simulation. It evaluates optical clock capabilities in temporal gravity field inversion by considering the clock noise characteristics, designing satellite formations, and simulating the performance of optical clocks. The results indicate that optical clocks exhibit higher sensitivity to low-degree gravity field signals. However, when the optical clock noise level drops below 1 × 10
−19
/
τ
(τ being the averaging time in seconds) in the satellite-to-ground (SG) mode or below 1 × 10
−20
/
τ
in the satellite-to-satellite (SS) mode, atmospheric and oceanic (AO) errors become the dominant source of error. At this noise level, optical clocks can detect time-variable gravity signals up to approximately degree 30. Compared to existing gravity measurement missions such as GRACE-FO, optical clocks exhibit consistent results in detecting signals below degree 20. If the orbital altitude is reduced to 250 km, the performance of optical clocks across all degrees aligns with the results of GRACE-FO. Furthermore, the study reveals that lowering the orbital altitude of satellite-based optical clocks from 485 to 250 km improves results by an average of 33%. Switching from the SS mode to the SG mode results in an average improvement of 51%, while each order-of-magnitude improvement in clock precision enhances results by an average of 60%. In summary, these findings highlight the tremendous potential of optical clock technology in determining Earth’s temporal gravity field and provide crucial technological support for NGGMs.</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-024-01930-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Altitude ; Clocks & watches ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Gravity field ; Noise ; Noise levels ; Original Article ; Satellites</subject><ispartof>Journal of geodesy, 2025, Vol.99 (1), Article 7</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-8e1557914c6801500638460f2f8929ae6601d281683e84dbdfc7d81a1ce0afe33</cites><orcidid>0000-0002-0169-9015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00190-024-01930-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00190-024-01930-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zheng, Shuyun</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Ma, Zhiyu</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Luo, Zhicai</creatorcontrib><title>On the feasibility of retrieving the temporal gravity field via improved optical clocks</title><title>Journal of geodesy</title><addtitle>J Geod</addtitle><description>The development of optical clocks has experienced significant acceleration in recent years, positioning them as one of the most promising quantum optical sensors for next-generation gravimetric missions (NGGMs). This study investigates the feasibility of retrieving the temporal gravity field via improved optical clocks through a closed-loop simulation. It evaluates optical clock capabilities in temporal gravity field inversion by considering the clock noise characteristics, designing satellite formations, and simulating the performance of optical clocks. The results indicate that optical clocks exhibit higher sensitivity to low-degree gravity field signals. However, when the optical clock noise level drops below 1 × 10
−19
/
τ
(τ being the averaging time in seconds) in the satellite-to-ground (SG) mode or below 1 × 10
−20
/
τ
in the satellite-to-satellite (SS) mode, atmospheric and oceanic (AO) errors become the dominant source of error. At this noise level, optical clocks can detect time-variable gravity signals up to approximately degree 30. Compared to existing gravity measurement missions such as GRACE-FO, optical clocks exhibit consistent results in detecting signals below degree 20. If the orbital altitude is reduced to 250 km, the performance of optical clocks across all degrees aligns with the results of GRACE-FO. Furthermore, the study reveals that lowering the orbital altitude of satellite-based optical clocks from 485 to 250 km improves results by an average of 33%. Switching from the SS mode to the SG mode results in an average improvement of 51%, while each order-of-magnitude improvement in clock precision enhances results by an average of 60%. In summary, these findings highlight the tremendous potential of optical clock technology in determining Earth’s temporal gravity field and provide crucial technological support for NGGMs.</description><subject>Altitude</subject><subject>Clocks & watches</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Gravity field</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Original Article</subject><subject>Satellites</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZJE3Toyx-gbAXxWPItsmatdvWpFvYf292K3jzNAPzvDPDQ8g1wi0CFHcRAEugwARNDQcqT8gMBWcUeSlOyQxKUdKiQHFOLmLcJLzIlZyRj2WbDZ82c9ZEv_KNH_ZZ57Jgh-Dt6Nv1cTrYbd8F02TrYMYD4rxt6mz0JvPbPnSjrbOuH3yVkKrpqq94Sc6caaK9-q1z8v748LZ4pq_Lp5fF_SutGMBAlcU8L0oUlVSAOYDkSkhwzKmSlcZKCVgzhVJxq0S9ql1V1AoNVhaMs5zPyc20N33xvbNx0JtuF9p0UnPMUbCCI0sUm6gqdDEG63Qf_NaEvUbQB4F6EqiTQH0UqGUK8SkUE9yubfhb_U_qB2yDcvw</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zheng, Shuyun</creator><creator>Zhou, Hao</creator><creator>Ma, Zhiyu</creator><creator>Guo, Xiang</creator><creator>Luo, Zhicai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-0169-9015</orcidid></search><sort><creationdate>2025</creationdate><title>On the feasibility of retrieving the temporal gravity field via improved optical clocks</title><author>Zheng, Shuyun ; Zhou, Hao ; Ma, Zhiyu ; Guo, Xiang ; Luo, Zhicai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-8e1557914c6801500638460f2f8929ae6601d281683e84dbdfc7d81a1ce0afe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Altitude</topic><topic>Clocks & watches</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Gravity field</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Original Article</topic><topic>Satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Shuyun</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Ma, Zhiyu</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Luo, Zhicai</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Shuyun</au><au>Zhou, Hao</au><au>Ma, Zhiyu</au><au>Guo, Xiang</au><au>Luo, Zhicai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the feasibility of retrieving the temporal gravity field via improved optical clocks</atitle><jtitle>Journal of geodesy</jtitle><stitle>J Geod</stitle><date>2025</date><risdate>2025</risdate><volume>99</volume><issue>1</issue><artnum>7</artnum><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>The development of optical clocks has experienced significant acceleration in recent years, positioning them as one of the most promising quantum optical sensors for next-generation gravimetric missions (NGGMs). This study investigates the feasibility of retrieving the temporal gravity field via improved optical clocks through a closed-loop simulation. It evaluates optical clock capabilities in temporal gravity field inversion by considering the clock noise characteristics, designing satellite formations, and simulating the performance of optical clocks. The results indicate that optical clocks exhibit higher sensitivity to low-degree gravity field signals. However, when the optical clock noise level drops below 1 × 10
−19
/
τ
(τ being the averaging time in seconds) in the satellite-to-ground (SG) mode or below 1 × 10
−20
/
τ
in the satellite-to-satellite (SS) mode, atmospheric and oceanic (AO) errors become the dominant source of error. At this noise level, optical clocks can detect time-variable gravity signals up to approximately degree 30. Compared to existing gravity measurement missions such as GRACE-FO, optical clocks exhibit consistent results in detecting signals below degree 20. If the orbital altitude is reduced to 250 km, the performance of optical clocks across all degrees aligns with the results of GRACE-FO. Furthermore, the study reveals that lowering the orbital altitude of satellite-based optical clocks from 485 to 250 km improves results by an average of 33%. Switching from the SS mode to the SG mode results in an average improvement of 51%, while each order-of-magnitude improvement in clock precision enhances results by an average of 60%. In summary, these findings highlight the tremendous potential of optical clock technology in determining Earth’s temporal gravity field and provide crucial technological support for NGGMs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00190-024-01930-6</doi><orcidid>https://orcid.org/0000-0002-0169-9015</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-7714 |
ispartof | Journal of geodesy, 2025, Vol.99 (1), Article 7 |
issn | 0949-7714 1432-1394 |
language | eng |
recordid | cdi_proquest_journals_3151427312 |
source | SpringerLink (Online service) |
subjects | Altitude Clocks & watches Earth and Environmental Science Earth Sciences Geophysics/Geodesy Gravity field Noise Noise levels Original Article Satellites |
title | On the feasibility of retrieving the temporal gravity field via improved optical clocks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20feasibility%20of%20retrieving%20the%20temporal%20gravity%20field%20via%20improved%20optical%20clocks&rft.jtitle=Journal%20of%20geodesy&rft.au=Zheng,%20Shuyun&rft.date=2025&rft.volume=99&rft.issue=1&rft.artnum=7&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-024-01930-6&rft_dat=%3Cproquest_cross%3E3151427312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151427312&rft_id=info:pmid/&rfr_iscdi=true |