Structure of mushy layers grown from perfectly and imperfectly conducting boundaries. Part 2. Onset of convection
We study linear convective instability in a mushy layer formed by solidification of a binary alloy, cooled by either an isothermal perfectly conducting boundary or an imperfectly conducting boundary where the surface temperature depends linearly on the surface heat flux. A companion paper (Hitchen &...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2025-01, Vol.1002, Article A26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study linear convective instability in a mushy layer formed by solidification of a binary alloy, cooled by either an isothermal perfectly conducting boundary or an imperfectly conducting boundary where the surface temperature depends linearly on the surface heat flux. A companion paper (Hitchen & Wells, J. Fluid Mech., 2025, in press) showed how thermal and salinity conditions impact mush structure. We here quantify the impact on convective instability, described by a Rayleigh number characterising the ratio of buoyancy to dissipative mechanisms. Two limits emerge for a perfectly conducting boundary. When the salinity-dependent freezing-point depression is large versus the temperature difference across the mush, convection penetrates throughout the depth of a high-porosity mush. The other limit, which we will call the Stefan limit, has small freezing-point depression and inhibits convection, which localises at onset to a high-porosity boundary layer near the mush–liquid interface. Scaling arguments characterise variation of the critical Rayleigh number and wavenumber based on the potential energy contained in order-one aspect ratio convective cells over the high-porosity regions. The Stefan number characterises the ratio of latent and sensible heats, and has moderate impact on stability via modification of the background temperature and porosity. For imperfectly conducting boundaries, the changing surface temperature causes stability to decrease over time in the limit of large freezing-point depression, but in the Stefan limit combines with the decreasing porosity to yield non-monotonic variation of the critical Rayleigh number. We discuss the implications for convection in growing sea ice. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2024.809 |