Quasiconformal Metric on a Sequence Space and Packing Dimensions of Basins Generated by Shift Invariant Measures

We define a quasiconformal metric on the space of infinite signals X N , where X is a finite alphabet, such that the left shift mapping on X N locally looks like a similarity. For each signal the shift iterations generate a sequence of empirical measures on X N and the corresponding set of cluster p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.286 (4), p.472-484
Hauptverfasser: Bakhtin, Victor, Sadok, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define a quasiconformal metric on the space of infinite signals X N , where X is a finite alphabet, such that the left shift mapping on X N locally looks like a similarity. For each signal the shift iterations generate a sequence of empirical measures on X N and the corresponding set of cluster points. The whole X N is partitioned into narrow basins consisting of signals having the same cluster sets for the sequences of empirical measures, and for each narrow basin we calculate its packing dimension with respect to the quasiconformal metric.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-024-07522-1