A New Procedure for Determining Monthly Reservoir Storage Zones to Ensure Reliable Hourly Hydropower Supply

The uncertainty of natural inflows and market behavior challenges ensuring a reliable power balance in hydropower-dominated electricity markets. This study proposes a novel framework integrating hourly load balancing on typical days into a monthly scheduling model solved with Gurobi11.0.1 to evaluat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-12, Vol.16 (24), p.3605
Hauptverfasser: Liu, Shuangquan, Luo, Jingzhen, Fu, Kaixiang, Li, Huixian, Qian, Guoyuan, Xia, Wang, Wang, Jinwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The uncertainty of natural inflows and market behavior challenges ensuring a reliable power balance in hydropower-dominated electricity markets. This study proposes a novel framework integrating hourly load balancing on typical days into a monthly scheduling model solved with Gurobi11.0.1 to evaluate demand-met reliability across storage and inflow states. By employing total storage as a system state to reduce dimensional complexity and simulating future runoff scenarios based on current inflows, the method performs multi-year statistical simulations to assess reliability over the following year. Applied to a system of 39 hydropower reservoirs in China, the case studies of present models and procedures suggest: (1) controlling reservoir storage levels during the dry season is crucial for ensuring the power demand-met rate in the following year, with May being the most critical month; (2) the power demand-met rate does not monotonically increase with higher storage levels—there is an optimal storage level that maximizes the demand-met rate; and (3) June and October offer the greatest flexibility in storage adjustment to achieve the highest demand-met reliability.
ISSN:2073-4441
2073-4441
DOI:10.3390/w16243605