Seasonal Differences and Driving Factors of Microbial Community Structure in Wetlands Along Shores of Daihai Lake
Microorganisms play a crucial role in biogeochemical cycling within wetland ecosystems. Soil-environment-mediated seasonal changes in microbial structure require further investigation. However, the factors driving seasonal variations in the microbial abundance and diversity in the Daihai wetlands re...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-12, Vol.16 (24), p.11221 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microorganisms play a crucial role in biogeochemical cycling within wetland ecosystems. Soil-environment-mediated seasonal changes in microbial structure require further investigation. However, the factors driving seasonal variations in the microbial abundance and diversity in the Daihai wetlands remain unclear. This study employed high-throughput sequencing technology to examine the bacterial community structure and diversity in the lakeshore zone of Daihai across different seasons and to explore the seasonal variations in the bacterial community structure and the influence of driving factors. The results indicated that Pseudomonadota and Bacteroidota dominate in spring and Pseudomonadota abundance further increases in summer, while organic-matter-decomposing microorganisms (e.g., Actinobacteriota and Bacteroidota) dominate in autumn. Microbial diversity indices indicated a significantly greater diversity in spring than in summer and autumn (p < 0.05). Changes in environmental variables were strongly associated with bacterial community changes, with variations in total nitrogen, ammonium nitrogen, and soil moisture content being identified as potential key factors influencing seasonal bacterial diversity trends. Furthermore, bacterial community assembly in spring is driven by both stochastic processes and environmental selection, suggesting that abundant nutrients and organic matter promote bacterial diversity. The findings of this study provide a theoretical basis for wetland ecosystem restoration and conservation. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su162411221 |