Analysis of the Effect of Structural Parameters on the Internal Flow Field of Composite Curved Inlet Body Hydrocyclone
To enhance the classification efficiency of hydrocyclones, this study introduces a novel hydrocyclone design featuring a composite curved-inlet-body structure. Through numerical simulations, the internal flow field characteristics of this structure are thoroughly investigated. The results reveal sev...
Gespeichert in:
Veröffentlicht in: | Processes 2024-12, Vol.12 (12), p.2654 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To enhance the classification efficiency of hydrocyclones, this study introduces a novel hydrocyclone design featuring a composite curved-inlet-body structure. Through numerical simulations, the internal flow field characteristics of this structure are thoroughly investigated. The results reveal several key findings: when the diameter of the overflow tube is reduced below a critical threshold, the axial velocity exhibits predominantly downward movement within the outer cyclone, accompanied by substantial recirculation, leading to a loss of effective separation. Moreover, both static pressure and tangential velocity are largely independent of the insertion depth of the overflow tube. In contrast, the diameter of the bottom flow opening plays a crucial role in determining flow dynamics within the hydrocyclone. An excessively large or small bottom opening leads to flow instabilities, causing fluctuations that disrupt the uniformity of the flow field. Additionally, a small height-to-diameter ratio exacerbates flow instability, increasing turbulence intensity and resulting in irregular fluctuations in the LZVV. These findings provide important theoretical insights for the design of more efficient hydrocyclone separation structures. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12122654 |