Research on Gas Emission Prediction Based on KPCA-ICSA-SVR

In the context of deep mining, the uncertainty of gas emission levels presents significant safety challenges for mines. This study proposes a gas emission prediction model based on Kernel Principal Component Analysis (KPCA), an Improved Crow Search Algorithm (ICSA) incorporating adaptive neighborhoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-12, Vol.12 (12), p.2655
Hauptverfasser: Liu, Li, Dai, Linchao, Mao, Xinyi, Chen, Yutao, Jing, Yongheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of deep mining, the uncertainty of gas emission levels presents significant safety challenges for mines. This study proposes a gas emission prediction model based on Kernel Principal Component Analysis (KPCA), an Improved Crow Search Algorithm (ICSA) incorporating adaptive neighborhood search, and Support Vector Regression (SVR). Initially, data preprocessing is conducted to ensure a clean and complete dataset. Subsequently, KPCA is applied to reduce dimensionality by extracting key nonlinear features from the gas emission influencing factors, thereby enhancing computational efficiency. The ICSA is then employed to optimize SVR hyperparameters, improving the model’s optimization capabilities and generalization performance, leading to the development of a robust KPCA-ICSA-SVR prediction model. The results indicate that the KPCA-ICSA-SVR model achieves the best performance, with RMSE values of 0.17898 and 0.3071 for the training and testing sets, respectively, demonstrating superior robustness and generalization capability.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr12122655