Exploring the Possibility of Ionic Liquid as a Dimensional Stabilizer for Well-Preserved Waterlogged Archaeological Wood

Dehydration is the principal conservation process for waterlogged archaeological wood (WAW), with the aim of preventing shrinkage and cracking. For well-preserved WAW, shrinkage mainly takes place when the moisture content is below the fiber saturation point. Here, we conduct a new trial using ionic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2024-12, Vol.15 (12), p.2160
Hauptverfasser: Zhou, Yihang, Zhang, Zhiguo, Wang, Kai, Jin, Tao, Feng, Yi, Wu, Mengruo, Han, Xiangna, Han, Liuyang, Wang, Jiajun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dehydration is the principal conservation process for waterlogged archaeological wood (WAW), with the aim of preventing shrinkage and cracking. For well-preserved WAW, shrinkage mainly takes place when the moisture content is below the fiber saturation point. Here, we conduct a new trial using ionic liquid as a dimensional stabilizer to maintain a stable swollen state of WAW. Molecular dynamics simulation (MD), shrinkage measurement, Fourier transform infrared spectroscopy (FTIR), and dynamic vapor sorption (DVS) were adopted to investigate the interactions and effects of 1-Butyl-3-methylimidazolium chloride ([Bmim][Cl]) on WAW (Dipterocarpaceae Dipterocarpus sp. with a maximum moisture content of 80.3%) in comparison with the conventional material polyethylene glycol (PEG). The results show that [Bmim][Cl] and its water mixtures have a comparable or slightly greater ability to swell amorphous cellulose than does water at room temperature, while crystalline cellulose is left intact. The samples treated with [Bmim][Cl] show less shrinkage than the PEG 300- and PEG 2000-treated samples at all tested concentrations after air-drying. The best dimension control was achieved by 40 wt% [Bmim][Cl], with volumetric shrinkage reduced from 5.03% to 0.47%. DVS analysis reveals that [Bmim][Cl] reduces moisture contents at moderate and low relative humidity (
ISSN:1999-4907
1999-4907
DOI:10.3390/f15122160