Cu/MOF-808 Catalyst for Transfer Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Furandimethanol with Formic Acid Mediation
Biomass platform compound 5-Hydroxymethylfurfural (HMF), with its low price and abundant source, can be used as a renewable resource to replace traditional petrochemicals. MOF-808(Zr) has tunable active sites and excellent stability under high temperatures and acidic as well as basic environments, a...
Gespeichert in:
Veröffentlicht in: | Catalysts 2024-12, Vol.14 (12), p.929 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biomass platform compound 5-Hydroxymethylfurfural (HMF), with its low price and abundant source, can be used as a renewable resource to replace traditional petrochemicals. MOF-808(Zr) has tunable active sites and excellent stability under high temperatures and acidic as well as basic environments, and the unsaturated coordination of metal ions within its framework structure can exhibit Lewis acidity, facilitating catalytic transfer hydrogenation from HMF to 2, 5-Furandimethanol (BHMF). The hydrothermal–impregnation–reduction method was used to prepare Cu/MOF-808 catalysts with high catalytic performance. Formic acid was chosen as the hydrogen donor solvent. The selectivity and yield of BHMF were 75.65% and 71%, respectively, at 150 °C for 4 h. A reaction pathway for the catalytic hydrogen transfer of HMF to BHMF was proposed. The high activity and stability of the Cu/MOF-808 catalyst with dual active sites provide a viable method for feasible hydrogenation of HMF to high value-added compounds. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal14120929 |