Cu/MOF-808 Catalyst for Transfer Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Furandimethanol with Formic Acid Mediation

Biomass platform compound 5-Hydroxymethylfurfural (HMF), with its low price and abundant source, can be used as a renewable resource to replace traditional petrochemicals. MOF-808(Zr) has tunable active sites and excellent stability under high temperatures and acidic as well as basic environments, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2024-12, Vol.14 (12), p.929
Hauptverfasser: Tan, Jingxin, Li, Mengqi, Liu, Lingtao, Wang, Lijian, Wang, Haocun, Bian, Junjie, Li, Chunhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomass platform compound 5-Hydroxymethylfurfural (HMF), with its low price and abundant source, can be used as a renewable resource to replace traditional petrochemicals. MOF-808(Zr) has tunable active sites and excellent stability under high temperatures and acidic as well as basic environments, and the unsaturated coordination of metal ions within its framework structure can exhibit Lewis acidity, facilitating catalytic transfer hydrogenation from HMF to 2, 5-Furandimethanol (BHMF). The hydrothermal–impregnation–reduction method was used to prepare Cu/MOF-808 catalysts with high catalytic performance. Formic acid was chosen as the hydrogen donor solvent. The selectivity and yield of BHMF were 75.65% and 71%, respectively, at 150 °C for 4 h. A reaction pathway for the catalytic hydrogen transfer of HMF to BHMF was proposed. The high activity and stability of the Cu/MOF-808 catalyst with dual active sites provide a viable method for feasible hydrogenation of HMF to high value-added compounds.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal14120929