Unraveling the significance of cobalt on transformation kinetics, crystallography and impact toughness in high-strength steels

This work reveals the significant effects of cobalt (Co) on the microstructure and impact toughness of as-quenched high-strength steels by experimental characterizations and thermo-kinetic analyses. The results show that the Co-bearing steel exhibits finer blocks and a lower ductile–brittle transiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2025-02, Vol.32 (2), p.380-390
Hauptverfasser: Yu, Yishuang, Zhao, Jingxiao, Wang, Xuelin, Guo, Hui, Xie, Zhenjia, Shang, Chengjia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work reveals the significant effects of cobalt (Co) on the microstructure and impact toughness of as-quenched high-strength steels by experimental characterizations and thermo-kinetic analyses. The results show that the Co-bearing steel exhibits finer blocks and a lower ductile–brittle transition temperature than the steel without Co. Moreover, the Co-bearing steel reveals higher transformation rates at the intermediate stage with bainite volume fraction ranging from around 0.1 to 0.6. The improved impact toughness of the Co-bearing steel results from the higher dense block boundaries dominated by the V1/V2 variant pair. Furthermore, the addition of Co induces a larger transformation driving force and a lower bainite start temperature ( B S ), thereby contributing to the refinement of blocks and the increase of the V1/V2 variant pair. These findings would be instructive for the composition, microstructure design, and property optimization of high-strength steels.
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-024-2935-3