Position reconstruction using deep learning for the HERD PSD beam test

The High Energy cosmic-Radiation Detection (HERD) facility is a dedicated high energy astronomy and particle physics experiment planned to be installed on the Chinese space station, aiming to detect high-energy cosmic rays (\si{\giga\electronvolt} \(\sim\) \si{\peta\electronvolt}) and high-energy ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Yu, Longkun, Zhang, Chenxing, Guo, Dongya, Liu, Yaqing, Peng, Wenxi, Wang, Zhigang, Lu, Bing, Qiao, Rui, Gong, Ke, Wang, Jing, Yang, Shuai, Li, Yongye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The High Energy cosmic-Radiation Detection (HERD) facility is a dedicated high energy astronomy and particle physics experiment planned to be installed on the Chinese space station, aiming to detect high-energy cosmic rays (\si{\giga\electronvolt} \(\sim\) \si{\peta\electronvolt}) and high-energy gamma rays (> \SI{500}{\mega\electronvolt}). The Plastic Scintillator Detector (PSD) is one of the sub-detectors of HERD, with its main function of providing real-time anti-conincidence signals for gamma-ray detection and the secondary function of measuring the charge of cosmic-rays. In 2023, a prototype of PSD was developed and tested at CERN PS\&SPS. In this paper, we investigate the position response of the PSD using two reconstruction algorithms: the classic dual-readout ratio and the deep learning method (KAN \& MLP neural network). With the latter, we achieved a position resolution of 2 mm (\(1\sigma\)), which is significantly better than the classic method.
ISSN:2331-8422