Position reconstruction using deep learning for the HERD PSD beam test
The High Energy cosmic-Radiation Detection (HERD) facility is a dedicated high energy astronomy and particle physics experiment planned to be installed on the Chinese space station, aiming to detect high-energy cosmic rays (\si{\giga\electronvolt} \(\sim\) \si{\peta\electronvolt}) and high-energy ga...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The High Energy cosmic-Radiation Detection (HERD) facility is a dedicated high energy astronomy and particle physics experiment planned to be installed on the Chinese space station, aiming to detect high-energy cosmic rays (\si{\giga\electronvolt} \(\sim\) \si{\peta\electronvolt}) and high-energy gamma rays (> \SI{500}{\mega\electronvolt}). The Plastic Scintillator Detector (PSD) is one of the sub-detectors of HERD, with its main function of providing real-time anti-conincidence signals for gamma-ray detection and the secondary function of measuring the charge of cosmic-rays. In 2023, a prototype of PSD was developed and tested at CERN PS\&SPS. In this paper, we investigate the position response of the PSD using two reconstruction algorithms: the classic dual-readout ratio and the deep learning method (KAN \& MLP neural network). With the latter, we achieved a position resolution of 2 mm (\(1\sigma\)), which is significantly better than the classic method. |
---|---|
ISSN: | 2331-8422 |