Reduced kinetic modelling of shattered pellet injection in ASDEX Upgrade

Plasma-terminating disruptions represent a critical outstanding issue for reactor-relevant tokamaks. ITER will use shattered pellet injection (SPI) as its disruption mitigation system to reduce heat loads, vessel forces, and to suppress the formation of runaway electrons. In this paper we demonstrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Halldestam, Peter, Heinrich, Paul, Papp, Gergely, Hoppe, Mathias, Hoelzl, Matthias, Pusztai, István, Vallhagen, Oskar, Fischer, Rainer, Jenko, Frank, the ASDEX Upgrade Team, the EUROfusion Tokamak Exploitation Team
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasma-terminating disruptions represent a critical outstanding issue for reactor-relevant tokamaks. ITER will use shattered pellet injection (SPI) as its disruption mitigation system to reduce heat loads, vessel forces, and to suppress the formation of runaway electrons. In this paper we demonstrate that reduced kinetic modelling of SPI is capable of capturing the major experimental trends in ASDEX Upgrade SPI experiments, such as dependence of the radiated energy fraction on neon content, or the current quench dynamics. Simulations are also consistent with the experimental observation of no runaway electron generation with neon and mixed deuterium-neon pellet composition. We also show that statistical variations in the fragmentation process only have a notable impact on disruption dynamics at intermediate neon doping, as was observed in experiments.
ISSN:2331-8422