Contemporary implementations of spiking bio-inspired neural networks

The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Schegolev, Andrey E, Bastrakova, Marina V, Sergeev, Michael A, Maksimovskaya, Anastasia A, Klenov, Nikolay V, Soloviev, Igor I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Schegolev, Andrey E
Bastrakova, Marina V
Sergeev, Michael A
Maksimovskaya, Anastasia A
Klenov, Nikolay V
Soloviev, Igor I
description The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including dynamics), but also contribute to the growing knowledge of the human nervous system. Our analysis has shown that the hardware implementation is of great importance, since the specifics of the physical processes in the network cells affect their ability to simulate the neural activity of living neural tissue, the efficiency of certain stages of information processing, storage and transmission. This survey reviews existing hardware neuromorphic implementations of bio-inspired spiking networks in the "semiconductor", "superconductor" and "optical" domains. Special attention is given to the possibility of effective "hybrids" of different approaches
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3149107390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149107390</sourcerecordid><originalsourceid>FETCH-proquest_journals_31491073903</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgupElr7boqHsB9ifgq6ee9-JIi3t4uPICrYZhZiUQbk2fHQuuNSEPolVL6UOmyNIk4NYQRJk9s-SPd5EeYAKONjjBI6mTwbnD4lHdHmcPFGB4SYWY7Lohv4iHsxLqzY4D0x63YX8635pp5ptcMIbY9zYxLak1e1LmqTK3Mf9cX3fo7wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149107390</pqid></control><display><type>article</type><title>Contemporary implementations of spiking bio-inspired neural networks</title><source>Free E- Journals</source><creator>Schegolev, Andrey E ; Bastrakova, Marina V ; Sergeev, Michael A ; Maksimovskaya, Anastasia A ; Klenov, Nikolay V ; Soloviev, Igor I</creator><creatorcontrib>Schegolev, Andrey E ; Bastrakova, Marina V ; Sergeev, Michael A ; Maksimovskaya, Anastasia A ; Klenov, Nikolay V ; Soloviev, Igor I</creatorcontrib><description>The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including dynamics), but also contribute to the growing knowledge of the human nervous system. Our analysis has shown that the hardware implementation is of great importance, since the specifics of the physical processes in the network cells affect their ability to simulate the neural activity of living neural tissue, the efficiency of certain stages of information processing, storage and transmission. This survey reviews existing hardware neuromorphic implementations of bio-inspired spiking networks in the "semiconductor", "superconductor" and "optical" domains. Special attention is given to the possibility of effective "hybrids" of different approaches</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Data processing ; Hardware ; Nervous system ; Neural networks ; Spiking</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Schegolev, Andrey E</creatorcontrib><creatorcontrib>Bastrakova, Marina V</creatorcontrib><creatorcontrib>Sergeev, Michael A</creatorcontrib><creatorcontrib>Maksimovskaya, Anastasia A</creatorcontrib><creatorcontrib>Klenov, Nikolay V</creatorcontrib><creatorcontrib>Soloviev, Igor I</creatorcontrib><title>Contemporary implementations of spiking bio-inspired neural networks</title><title>arXiv.org</title><description>The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including dynamics), but also contribute to the growing knowledge of the human nervous system. Our analysis has shown that the hardware implementation is of great importance, since the specifics of the physical processes in the network cells affect their ability to simulate the neural activity of living neural tissue, the efficiency of certain stages of information processing, storage and transmission. This survey reviews existing hardware neuromorphic implementations of bio-inspired spiking networks in the "semiconductor", "superconductor" and "optical" domains. Special attention is given to the possibility of effective "hybrids" of different approaches</description><subject>Clustering</subject><subject>Data processing</subject><subject>Hardware</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Spiking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgupElr7boqHsB9ifgq6ee9-JIi3t4uPICrYZhZiUQbk2fHQuuNSEPolVL6UOmyNIk4NYQRJk9s-SPd5EeYAKONjjBI6mTwbnD4lHdHmcPFGB4SYWY7Lohv4iHsxLqzY4D0x63YX8635pp5ptcMIbY9zYxLak1e1LmqTK3Mf9cX3fo7wg</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Schegolev, Andrey E</creator><creator>Bastrakova, Marina V</creator><creator>Sergeev, Michael A</creator><creator>Maksimovskaya, Anastasia A</creator><creator>Klenov, Nikolay V</creator><creator>Soloviev, Igor I</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241223</creationdate><title>Contemporary implementations of spiking bio-inspired neural networks</title><author>Schegolev, Andrey E ; Bastrakova, Marina V ; Sergeev, Michael A ; Maksimovskaya, Anastasia A ; Klenov, Nikolay V ; Soloviev, Igor I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31491073903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clustering</topic><topic>Data processing</topic><topic>Hardware</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Spiking</topic><toplevel>online_resources</toplevel><creatorcontrib>Schegolev, Andrey E</creatorcontrib><creatorcontrib>Bastrakova, Marina V</creatorcontrib><creatorcontrib>Sergeev, Michael A</creatorcontrib><creatorcontrib>Maksimovskaya, Anastasia A</creatorcontrib><creatorcontrib>Klenov, Nikolay V</creatorcontrib><creatorcontrib>Soloviev, Igor I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schegolev, Andrey E</au><au>Bastrakova, Marina V</au><au>Sergeev, Michael A</au><au>Maksimovskaya, Anastasia A</au><au>Klenov, Nikolay V</au><au>Soloviev, Igor I</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Contemporary implementations of spiking bio-inspired neural networks</atitle><jtitle>arXiv.org</jtitle><date>2024-12-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including dynamics), but also contribute to the growing knowledge of the human nervous system. Our analysis has shown that the hardware implementation is of great importance, since the specifics of the physical processes in the network cells affect their ability to simulate the neural activity of living neural tissue, the efficiency of certain stages of information processing, storage and transmission. This survey reviews existing hardware neuromorphic implementations of bio-inspired spiking networks in the "semiconductor", "superconductor" and "optical" domains. Special attention is given to the possibility of effective "hybrids" of different approaches</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3149107390
source Free E- Journals
subjects Clustering
Data processing
Hardware
Nervous system
Neural networks
Spiking
title Contemporary implementations of spiking bio-inspired neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Contemporary%20implementations%20of%20spiking%20bio-inspired%20neural%20networks&rft.jtitle=arXiv.org&rft.au=Schegolev,%20Andrey%20E&rft.date=2024-12-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3149107390%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149107390&rft_id=info:pmid/&rfr_iscdi=true