Contemporary implementations of spiking bio-inspired neural networks
The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including dynamics), but also contribute to the growing knowledge of the human nervous system. Our analysis has shown that the hardware implementation is of great importance, since the specifics of the physical processes in the network cells affect their ability to simulate the neural activity of living neural tissue, the efficiency of certain stages of information processing, storage and transmission. This survey reviews existing hardware neuromorphic implementations of bio-inspired spiking networks in the "semiconductor", "superconductor" and "optical" domains. Special attention is given to the possibility of effective "hybrids" of different approaches |
---|---|
ISSN: | 2331-8422 |