Repeated-Root Constacyclic Codes of Length \(3p^s\) over the Finite Non-Chain Ring \(\frac{\mathbb{F}_{p^m}[u, v]}{\langle u^2, v^2, uv-vu\rangle}\) and their Duals
This study aims to determine the algebraic structures of \(\alpha\)-constacyclic codes of length \(3p^s\) over the finite commutative non-chain ring \(\mathcal{R}=\frac{\mathbb{F}_{p^m}[u, v]}{\langle u^2, v^2, uv-vu\rangle}\), for a prime \(p \neq 3.\) For the unit \(\alpha\), we consider two diffe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims to determine the algebraic structures of \(\alpha\)-constacyclic codes of length \(3p^s\) over the finite commutative non-chain ring \(\mathcal{R}=\frac{\mathbb{F}_{p^m}[u, v]}{\langle u^2, v^2, uv-vu\rangle}\), for a prime \(p \neq 3.\) For the unit \(\alpha\), we consider two different instances: when \(\alpha\) is a cube in \(\mathcal{R}\) and when it is not. Analyzing the first scenario is relatively easy. When \(\alpha\) is not a unit in \(\mathcal{R}\), we consider several subcases and determine the algebraic structures of constacyclic codes in those cases. Further, we also provide the number of codewords and the duals of \(\alpha\)-constacyclic codes. |
---|---|
ISSN: | 2331-8422 |