Projective and Carrollian geometry at time/space-like infinity on projectively compact Ricci flat Einstein manifolds

In this article we discuss how to construct canonical strong Carrollian geometries at time/space like infinity of projectively compact Ricci flat Einstein manifolds ( M ,  g ) and discuss the links between the underlying projective structure of the metric g . The obtained Carrollian geometries are d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2025-02, Vol.219 (1), Article 12
Hauptverfasser: Borthwick, Jack, Herfray, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Geometriae dedicata
container_volume 219
creator Borthwick, Jack
Herfray, Yannick
description In this article we discuss how to construct canonical strong Carrollian geometries at time/space like infinity of projectively compact Ricci flat Einstein manifolds ( M ,  g ) and discuss the links between the underlying projective structure of the metric g . The obtained Carrollian geometries are determined by the data of the projective compactification. The key idea to achieve this is to consider a new type of Cartan geometry based on a non-effective homogeneous model for projective geometry. We prove that this structure is a general feature of projectively compact Ricci flat Einstein manifolds.
doi_str_mv 10.1007/s10711-024-00973-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_3148828707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148828707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-11ef88024a7447c8a1ff3b5e9051c32de41863dead4c281201507d0f440cc40b3</originalsourceid><addsrcrecordid>eNp9kUFrVDEUhYMoOLb9A10FXLmIvTcvmWSWZaitMKCIrkOal9SM7yVjkhbm3zfjk7pzdeHyncO95xByifARAdRVRVCIDLhgABs1MPmKrFAqzja41q_JCkCsmVRSviXvat3DiVJ8RdrXkvfetfjkqU0j3dpS8jRFm-iDz7Nv5Uhtoy3O_qoerPNsir88jSnEFNuR5kQPLw7Tkbo8d6rRb9G5SMPUtTcx1eZjorNNMeRprOfkTbBT9Rd_5xn58enm-_aO7b7cft5e75jjg2gM0Qet-09WCaGcthjCcC_9BiS6gY9eoF4Po7ejcFwjB5SgRghCgHMC7ocz8mHx_WkncyhxtuVoso3m7npnTrseCvRQNk_Y2fcL29_5_ehrM_v8WFI_zwwotOZageoUXyhXcq3FhxdbBHNqwixNmH61-dOEkV00LKLa4fTgyz_r_6ieAZ0CjAE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148828707</pqid></control><display><type>article</type><title>Projective and Carrollian geometry at time/space-like infinity on projectively compact Ricci flat Einstein manifolds</title><source>Springer Nature - Complete Springer Journals</source><creator>Borthwick, Jack ; Herfray, Yannick</creator><creatorcontrib>Borthwick, Jack ; Herfray, Yannick</creatorcontrib><description>In this article we discuss how to construct canonical strong Carrollian geometries at time/space like infinity of projectively compact Ricci flat Einstein manifolds ( M ,  g ) and discuss the links between the underlying projective structure of the metric g . The obtained Carrollian geometries are determined by the data of the projective compactification. The key idea to achieve this is to consider a new type of Cartan geometry based on a non-effective homogeneous model for projective geometry. We prove that this structure is a general feature of projectively compact Ricci flat Einstein manifolds.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-024-00973-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; General Relativity and Quantum Cosmology ; Hyperbolic Geometry ; Infinity ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Physics ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2025-02, Vol.219 (1), Article 12</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-11ef88024a7447c8a1ff3b5e9051c32de41863dead4c281201507d0f440cc40b3</cites><orcidid>0000-0002-5646-4301 ; 0000-0002-7183-0752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-024-00973-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-024-00973-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04605759$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Borthwick, Jack</creatorcontrib><creatorcontrib>Herfray, Yannick</creatorcontrib><title>Projective and Carrollian geometry at time/space-like infinity on projectively compact Ricci flat Einstein manifolds</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>In this article we discuss how to construct canonical strong Carrollian geometries at time/space like infinity of projectively compact Ricci flat Einstein manifolds ( M ,  g ) and discuss the links between the underlying projective structure of the metric g . The obtained Carrollian geometries are determined by the data of the projective compactification. The key idea to achieve this is to consider a new type of Cartan geometry based on a non-effective homogeneous model for projective geometry. We prove that this structure is a general feature of projectively compact Ricci flat Einstein manifolds.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Hyperbolic Geometry</subject><subject>Infinity</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrVDEUhYMoOLb9A10FXLmIvTcvmWSWZaitMKCIrkOal9SM7yVjkhbm3zfjk7pzdeHyncO95xByifARAdRVRVCIDLhgABs1MPmKrFAqzja41q_JCkCsmVRSviXvat3DiVJ8RdrXkvfetfjkqU0j3dpS8jRFm-iDz7Nv5Uhtoy3O_qoerPNsir88jSnEFNuR5kQPLw7Tkbo8d6rRb9G5SMPUtTcx1eZjorNNMeRprOfkTbBT9Rd_5xn58enm-_aO7b7cft5e75jjg2gM0Qet-09WCaGcthjCcC_9BiS6gY9eoF4Po7ejcFwjB5SgRghCgHMC7ocz8mHx_WkncyhxtuVoso3m7npnTrseCvRQNk_Y2fcL29_5_ehrM_v8WFI_zwwotOZageoUXyhXcq3FhxdbBHNqwixNmH61-dOEkV00LKLa4fTgyz_r_6ieAZ0CjAE</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Borthwick, Jack</creator><creator>Herfray, Yannick</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5646-4301</orcidid><orcidid>https://orcid.org/0000-0002-7183-0752</orcidid></search><sort><creationdate>20250201</creationdate><title>Projective and Carrollian geometry at time/space-like infinity on projectively compact Ricci flat Einstein manifolds</title><author>Borthwick, Jack ; Herfray, Yannick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-11ef88024a7447c8a1ff3b5e9051c32de41863dead4c281201507d0f440cc40b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Hyperbolic Geometry</topic><topic>Infinity</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borthwick, Jack</creatorcontrib><creatorcontrib>Herfray, Yannick</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borthwick, Jack</au><au>Herfray, Yannick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective and Carrollian geometry at time/space-like infinity on projectively compact Ricci flat Einstein manifolds</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>219</volume><issue>1</issue><artnum>12</artnum><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>In this article we discuss how to construct canonical strong Carrollian geometries at time/space like infinity of projectively compact Ricci flat Einstein manifolds ( M ,  g ) and discuss the links between the underlying projective structure of the metric g . The obtained Carrollian geometries are determined by the data of the projective compactification. The key idea to achieve this is to consider a new type of Cartan geometry based on a non-effective homogeneous model for projective geometry. We prove that this structure is a general feature of projectively compact Ricci flat Einstein manifolds.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-024-00973-5</doi><orcidid>https://orcid.org/0000-0002-5646-4301</orcidid><orcidid>https://orcid.org/0000-0002-7183-0752</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2025-02, Vol.219 (1), Article 12
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_3148828707
source Springer Nature - Complete Springer Journals
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
General Relativity and Quantum Cosmology
Hyperbolic Geometry
Infinity
Mathematical Physics
Mathematics
Mathematics and Statistics
Original Paper
Physics
Projective Geometry
Topology
title Projective and Carrollian geometry at time/space-like infinity on projectively compact Ricci flat Einstein manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20and%20Carrollian%20geometry%20at%20time/space-like%20infinity%20on%20projectively%20compact%20Ricci%20flat%20Einstein%20manifolds&rft.jtitle=Geometriae%20dedicata&rft.au=Borthwick,%20Jack&rft.date=2025-02-01&rft.volume=219&rft.issue=1&rft.artnum=12&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-024-00973-5&rft_dat=%3Cproquest_hal_p%3E3148828707%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148828707&rft_id=info:pmid/&rfr_iscdi=true