Projective and Carrollian geometry at time/space-like infinity on projectively compact Ricci flat Einstein manifolds

In this article we discuss how to construct canonical strong Carrollian geometries at time/space like infinity of projectively compact Ricci flat Einstein manifolds ( M ,  g ) and discuss the links between the underlying projective structure of the metric g . The obtained Carrollian geometries are d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2025, Vol.219 (1)
Hauptverfasser: Borthwick, Jack, Herfray, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we discuss how to construct canonical strong Carrollian geometries at time/space like infinity of projectively compact Ricci flat Einstein manifolds ( M ,  g ) and discuss the links between the underlying projective structure of the metric g . The obtained Carrollian geometries are determined by the data of the projective compactification. The key idea to achieve this is to consider a new type of Cartan geometry based on a non-effective homogeneous model for projective geometry. We prove that this structure is a general feature of projectively compact Ricci flat Einstein manifolds.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-024-00973-5