Hamming and Symbol-Pair Distances of Constacyclic Codes of Length \(2p^s\) over \(\frac{\mathbb{F}_{p^m}[u, v]}{\langle u^2, v^2, uv-vu\rangle}\)
Let \(p\) be an odd prime. In this paper, we have determined the Hamming distances for constacyclic codes of length \(2p^s\) over the finite commutative non-chain ring \(\mathcal{R}=\frac{\mathbb{F}_{p^m}[u, v]}{\langle u^2, v^2, uv-vu\rangle}\). Also their symbol-pair distances are completely obtai...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(p\) be an odd prime. In this paper, we have determined the Hamming distances for constacyclic codes of length \(2p^s\) over the finite commutative non-chain ring \(\mathcal{R}=\frac{\mathbb{F}_{p^m}[u, v]}{\langle u^2, v^2, uv-vu\rangle}\). Also their symbol-pair distances are completely obtained. |
---|---|
ISSN: | 2331-8422 |