Investigating the Spatiotemporal Development of Substorm Expansion Phase Aurora: Successive Onsets or Poleward Boundary Intensifications?

Following the auroral substorm onset, the active aurora undergoes expansion, which can vary in spatial and temporal extent. The spatiotemporal development of the expansion phase active aurora is controlled by new auroral intensifications that often follow the initial onset. Using seven examples, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2024-12, Vol.129 (12), p.n/a
Hauptverfasser: Yadav, Sneha, Lyons, Larry R., Nishimura, Yukitoshi, Liu, Jiang, Tian, Sheng, Zou, Ying, Donovan, Eric F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following the auroral substorm onset, the active aurora undergoes expansion, which can vary in spatial and temporal extent. The spatiotemporal development of the expansion phase active aurora is controlled by new auroral intensifications that often follow the initial onset. Using seven examples, we investigate the nature of these new auroral intensifications and address a question: are they new auroral onsets, that is, “successive onsets” or poleward‐boundary intensifications (PBIs) and ensuing auroral streamers? We observed events that included both types of auroral features—successive onsets and PBIs—and their combinations. For multiple‐onset substorms, successive onsets may occur eastward, westward, and poleward of the initial onset, resulting in a diverse range of expansion phase spatial extent and durations. Single‐onset substorms show only one auroral onset, but their spatiotemporal development can resemble that of multiple‐onset substorms. However, the additional activations are mainly PBIs and subsequent streamers. In some cases, PBIs undergo explosion, leading to a rapid poleward and azimuthal expansion of the aurora, resembling the auroral substorm onset. A prolonged sequence of PBIs and its longitudinal extension can contribute significantly to the spatiotemporal development of substorms expansion phase. Results suggest that post‐onset flow channels drive the spatiotemporal development of the substorm expansion phase by (a) triggering successive onsets and (b) inducing bursts of PBIs and their prolonged sequence. We speculate that post‐onset flow channels likely originate from the polar cap, but more evaluation is required. Our findings highlight the significance of examining imager data before solely relying on magnetometers to identify substorm onsets. Key Points Successive onsets, often preceded by post‐onset streamers, cause diverse range of expansion phase coverage and durations A prolonged sequence of poleward‐boundary intensifications and auroral streamers play a crucial role in driving spatiotemporal development of substorm expansion phase Post‐onset flow channels play an important role in spatiotemporal development of substorm expansion phase
ISSN:2169-9380
2169-9402
DOI:10.1029/2024JA033086