ANDE: Detect the Anonymity Web Traffic With Comprehensive Model

The escalating growth of network technology and users poses critical challenges to network security. This paper introduces ANDE, a novel framework designed to enhance the classification accuracy of anonymity networks. ANDE incorporates both raw data features and statistical features extracted from n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2024-01, Vol.21 (6), p.6924-6936
Hauptverfasser: Deng, Yunlong, Peng, Tao, Wang, Bangchao, Wu, Gan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The escalating growth of network technology and users poses critical challenges to network security. This paper introduces ANDE, a novel framework designed to enhance the classification accuracy of anonymity networks. ANDE incorporates both raw data features and statistical features extracted from network traffic. Raw data features are transformed into images, enabling recognition and classification using robust image domain models. ANDE combines an enhanced Squeeze-and-Excitation (SE) ResNet with Multilayer Perceptrons (MLP), facilitating concurrent learning and classification of both feature types. Extensive experiments on two publicly available datasets demonstrate the superior performance of ANDE compared to traditional machine learning and deep learning methods. The comprehensive evaluation underscores ANDE's effectiveness in accurately classifying network traffic within anonymity networks. Additionally, this study empirically validates the efficacy of the SE block in augmenting the classification capabilities of the proposed framework, establishing ANDE as a promising solution for network traffic classification in the realm of network security.
ISSN:1932-4537
1932-4537
DOI:10.1109/TNSM.2024.3453917