Efficient high performance computing with the ALICE Event Processing Nodes GPU-based farm
Due to the increase of data volumes expected for the LHC Run 3 and Run 4, the ALICE Collaboration designed and deployed a new, energy efficient, computing model to run Online and Offline O\(^2\) data processing within a single software framework. The ALICE O\(^2\) Event Processing Nodes (EPN) projec...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the increase of data volumes expected for the LHC Run 3 and Run 4, the ALICE Collaboration designed and deployed a new, energy efficient, computing model to run Online and Offline O\(^2\) data processing within a single software framework. The ALICE O\(^2\) Event Processing Nodes (EPN) project performs online data reconstruction using GPUs (Graphic Processing Units) instead of CPUs and applies an efficient, entropy-based, online data compression to cope with PbPb collision data at a 50 kHz hadronic interaction rate. Also, the O\(^2\) EPN farm infrastructure features an energy efficient, environmentally friendly, adiabatic cooling system which allows for operational and capital cost savings. |
---|---|
ISSN: | 2331-8422 |