Two types of colossal magnetoresistance with distinct mechanisms in Eu5In2As6

Recent reports of colossal negative magnetoresistance (CMR) in a few magnetic semimetals and semiconductors have attracted attention, because these materials are devoid of the conventional mechanisms of CMR such as mixed valence, double exchange interaction, and Jahn-Teller distortion. New mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Sudhaman Balguri, Mahendru, Mira B, Gonzalez Delgado, Enrique O, Fruhling, Kyle, Yao, Xiaohan, Graf, David E, Rodriguez-Rivera, Jose A, Aczel, Adam A, Rydh, Andreas, Gaudet, Jonathan, Tafti, Fazel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent reports of colossal negative magnetoresistance (CMR) in a few magnetic semimetals and semiconductors have attracted attention, because these materials are devoid of the conventional mechanisms of CMR such as mixed valence, double exchange interaction, and Jahn-Teller distortion. New mechanisms have thus been proposed, including topological band structure, ferromagnetic clusters, orbital currents, and charge ordering. The CMR in these compounds has been reported in two forms: either a resistivity peak or a resistivity upturn suppressed by a magnetic field. Here we reveal both types of CMR in a single antiferromagnetic semiconductor Eu5In2As6. Using the transport and thermodynamic measurements, we demonstrate that the peak-type CMR is likely due to the percolation of magnetic polarons with increasing magnetic field, while the upturn-type CMR is proposed to result from the melting of a charge order under the magnetic field. We argue that similar mechanisms operate in other compounds, offering a unifying framework to understand CMR in seemingly different materials.
ISSN:2331-8422