Fractional-order rate-dependent porous-thermo-elasticity model based on new fractional derivatives with non-singular kernels and 1D transient dynamic response analysis of magnesium-based porous half-space with voids
Nowadays, the extensive applications of the ultrafast heating technologies (e.g., laser burst, induction heating, etc.) in the fabricating and manufacturing of the porous elastic solids (e.g., cellular material, mesoporous material, macroporous material, etc.) have aroused great interests on investi...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2025, Vol.95 (1), Article 30 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Archive of applied mechanics (1991) |
container_volume | 95 |
creator | Li, Chenlin Zheng, Liangcheng He, Tianhu |
description | Nowadays, the extensive applications of the ultrafast heating technologies (e.g., laser burst, induction heating, etc.) in the fabricating and manufacturing of the porous elastic solids (e.g., cellular material, mesoporous material, macroporous material, etc.) have aroused great interests on investigating the constitutive modeling and transient dynamic responses analysis of the porous-thermo-elastic coupling. Although the fractional temperature rate-dependent porous-thermo-elasticity theories have been historically proposed, the theoretical formulations still adopt the classical fractional derivatives with singular kernels, and the inherent strain relaxation effect and the associated memory dependency are not considered yet in the ultrafast heating condition. To compensate for such deficiency, the present work aims to establish a fractional-order rate-dependent porous-thermo-elasticity model based on the new fractional derivatives with the non-singular kernels (i.e., Caputo–Fabrizio, Atangana–Baleanu, and tempered Caputo fractional derivatives). With the aids of the extended thermodynamic principles, the new constitutive and governing equations are obtained. The proposed theoretical model is applied to investigate the 1D transient dynamic response analysis of magnesium-based porous half-space with voids by applying the Laplace transformation approach. The influences of the new fractional derivatives on the wave propagations and structural transient dynamic responses are evaluated and discussed. |
doi_str_mv | 10.1007/s00419-024-02719-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147077970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147077970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-2e8dd551c14e4b6c88d1054ec6688cc2437f0cf97c91b8176d82c25a6f37e3a63</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EEkvhC3CyxNngP0mcHFGhBalSL3C2vPZk1yWxg8fZdj8pXweXVHDjMJo5_N57Iz1C3gr-XnCuPyDnjRgYl00dXa-HZ2QnGiUZ73rxnOz4oAYmWqVekleId7zyreQ78usqW1dCinZiKXvINNsCzMMC0UMsdEk5rcjKEfKcGEwWS3ChnOmcPEx0bxE8TZFGuKfjXy9ancLJlnACpPehHGlMkWGIh3Wymf6AHGFCaqOn4hMt2UYMj2n-HO0cHM2AS4oIlbDTGQPSNNLZHiJgWGe2pW6v0aOdRoaLdbAlnVLw-Jq8GO2E8OZpX5DvV5-_XX5hN7fXXy8_3jAnOS9MQu992wonGmj2net7L3jbgOu6vndONkqP3I2DdoPY90J3vpdOtrYblQZlO3VB3m2-S04_V8Bi7tKa69NolGg013rQvFJyo1xOiBlGs-Qw23w2gpvHAs1WoKkFmj8FmocqUpsIKxwPkP9Z_0f1G6U0pXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147077970</pqid></control><display><type>article</type><title>Fractional-order rate-dependent porous-thermo-elasticity model based on new fractional derivatives with non-singular kernels and 1D transient dynamic response analysis of magnesium-based porous half-space with voids</title><source>SpringerLink Journals</source><creator>Li, Chenlin ; Zheng, Liangcheng ; He, Tianhu</creator><creatorcontrib>Li, Chenlin ; Zheng, Liangcheng ; He, Tianhu</creatorcontrib><description>Nowadays, the extensive applications of the ultrafast heating technologies (e.g., laser burst, induction heating, etc.) in the fabricating and manufacturing of the porous elastic solids (e.g., cellular material, mesoporous material, macroporous material, etc.) have aroused great interests on investigating the constitutive modeling and transient dynamic responses analysis of the porous-thermo-elastic coupling. Although the fractional temperature rate-dependent porous-thermo-elasticity theories have been historically proposed, the theoretical formulations still adopt the classical fractional derivatives with singular kernels, and the inherent strain relaxation effect and the associated memory dependency are not considered yet in the ultrafast heating condition. To compensate for such deficiency, the present work aims to establish a fractional-order rate-dependent porous-thermo-elasticity model based on the new fractional derivatives with the non-singular kernels (i.e., Caputo–Fabrizio, Atangana–Baleanu, and tempered Caputo fractional derivatives). With the aids of the extended thermodynamic principles, the new constitutive and governing equations are obtained. The proposed theoretical model is applied to investigate the 1D transient dynamic response analysis of magnesium-based porous half-space with voids by applying the Laplace transformation approach. The influences of the new fractional derivatives on the wave propagations and structural transient dynamic responses are evaluated and discussed.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-024-02719-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Dynamic response ; Elastic analysis ; Elasticity ; Engineering ; Half spaces ; Induction heating ; Laplace transforms ; Laser beam heating ; Magnesium ; Original ; Porous materials ; Strain relaxation ; Temperature dependence ; Theoretical and Applied Mechanics</subject><ispartof>Archive of applied mechanics (1991), 2025, Vol.95 (1), Article 30</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-2e8dd551c14e4b6c88d1054ec6688cc2437f0cf97c91b8176d82c25a6f37e3a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-024-02719-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-024-02719-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Chenlin</creatorcontrib><creatorcontrib>Zheng, Liangcheng</creatorcontrib><creatorcontrib>He, Tianhu</creatorcontrib><title>Fractional-order rate-dependent porous-thermo-elasticity model based on new fractional derivatives with non-singular kernels and 1D transient dynamic response analysis of magnesium-based porous half-space with voids</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>Nowadays, the extensive applications of the ultrafast heating technologies (e.g., laser burst, induction heating, etc.) in the fabricating and manufacturing of the porous elastic solids (e.g., cellular material, mesoporous material, macroporous material, etc.) have aroused great interests on investigating the constitutive modeling and transient dynamic responses analysis of the porous-thermo-elastic coupling. Although the fractional temperature rate-dependent porous-thermo-elasticity theories have been historically proposed, the theoretical formulations still adopt the classical fractional derivatives with singular kernels, and the inherent strain relaxation effect and the associated memory dependency are not considered yet in the ultrafast heating condition. To compensate for such deficiency, the present work aims to establish a fractional-order rate-dependent porous-thermo-elasticity model based on the new fractional derivatives with the non-singular kernels (i.e., Caputo–Fabrizio, Atangana–Baleanu, and tempered Caputo fractional derivatives). With the aids of the extended thermodynamic principles, the new constitutive and governing equations are obtained. The proposed theoretical model is applied to investigate the 1D transient dynamic response analysis of magnesium-based porous half-space with voids by applying the Laplace transformation approach. The influences of the new fractional derivatives on the wave propagations and structural transient dynamic responses are evaluated and discussed.</description><subject>Classical Mechanics</subject><subject>Dynamic response</subject><subject>Elastic analysis</subject><subject>Elasticity</subject><subject>Engineering</subject><subject>Half spaces</subject><subject>Induction heating</subject><subject>Laplace transforms</subject><subject>Laser beam heating</subject><subject>Magnesium</subject><subject>Original</subject><subject>Porous materials</subject><subject>Strain relaxation</subject><subject>Temperature dependence</subject><subject>Theoretical and Applied Mechanics</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EEkvhC3CyxNngP0mcHFGhBalSL3C2vPZk1yWxg8fZdj8pXweXVHDjMJo5_N57Iz1C3gr-XnCuPyDnjRgYl00dXa-HZ2QnGiUZ73rxnOz4oAYmWqVekleId7zyreQ78usqW1dCinZiKXvINNsCzMMC0UMsdEk5rcjKEfKcGEwWS3ChnOmcPEx0bxE8TZFGuKfjXy9ancLJlnACpPehHGlMkWGIh3Wymf6AHGFCaqOn4hMt2UYMj2n-HO0cHM2AS4oIlbDTGQPSNNLZHiJgWGe2pW6v0aOdRoaLdbAlnVLw-Jq8GO2E8OZpX5DvV5-_XX5hN7fXXy8_3jAnOS9MQu992wonGmj2net7L3jbgOu6vndONkqP3I2DdoPY90J3vpdOtrYblQZlO3VB3m2-S04_V8Bi7tKa69NolGg013rQvFJyo1xOiBlGs-Qw23w2gpvHAs1WoKkFmj8FmocqUpsIKxwPkP9Z_0f1G6U0pXs</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Li, Chenlin</creator><creator>Zheng, Liangcheng</creator><creator>He, Tianhu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Fractional-order rate-dependent porous-thermo-elasticity model based on new fractional derivatives with non-singular kernels and 1D transient dynamic response analysis of magnesium-based porous half-space with voids</title><author>Li, Chenlin ; Zheng, Liangcheng ; He, Tianhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-2e8dd551c14e4b6c88d1054ec6688cc2437f0cf97c91b8176d82c25a6f37e3a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Classical Mechanics</topic><topic>Dynamic response</topic><topic>Elastic analysis</topic><topic>Elasticity</topic><topic>Engineering</topic><topic>Half spaces</topic><topic>Induction heating</topic><topic>Laplace transforms</topic><topic>Laser beam heating</topic><topic>Magnesium</topic><topic>Original</topic><topic>Porous materials</topic><topic>Strain relaxation</topic><topic>Temperature dependence</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chenlin</creatorcontrib><creatorcontrib>Zheng, Liangcheng</creatorcontrib><creatorcontrib>He, Tianhu</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chenlin</au><au>Zheng, Liangcheng</au><au>He, Tianhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional-order rate-dependent porous-thermo-elasticity model based on new fractional derivatives with non-singular kernels and 1D transient dynamic response analysis of magnesium-based porous half-space with voids</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2025</date><risdate>2025</risdate><volume>95</volume><issue>1</issue><artnum>30</artnum><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>Nowadays, the extensive applications of the ultrafast heating technologies (e.g., laser burst, induction heating, etc.) in the fabricating and manufacturing of the porous elastic solids (e.g., cellular material, mesoporous material, macroporous material, etc.) have aroused great interests on investigating the constitutive modeling and transient dynamic responses analysis of the porous-thermo-elastic coupling. Although the fractional temperature rate-dependent porous-thermo-elasticity theories have been historically proposed, the theoretical formulations still adopt the classical fractional derivatives with singular kernels, and the inherent strain relaxation effect and the associated memory dependency are not considered yet in the ultrafast heating condition. To compensate for such deficiency, the present work aims to establish a fractional-order rate-dependent porous-thermo-elasticity model based on the new fractional derivatives with the non-singular kernels (i.e., Caputo–Fabrizio, Atangana–Baleanu, and tempered Caputo fractional derivatives). With the aids of the extended thermodynamic principles, the new constitutive and governing equations are obtained. The proposed theoretical model is applied to investigate the 1D transient dynamic response analysis of magnesium-based porous half-space with voids by applying the Laplace transformation approach. The influences of the new fractional derivatives on the wave propagations and structural transient dynamic responses are evaluated and discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-024-02719-x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2025, Vol.95 (1), Article 30 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_proquest_journals_3147077970 |
source | SpringerLink Journals |
subjects | Classical Mechanics Dynamic response Elastic analysis Elasticity Engineering Half spaces Induction heating Laplace transforms Laser beam heating Magnesium Original Porous materials Strain relaxation Temperature dependence Theoretical and Applied Mechanics |
title | Fractional-order rate-dependent porous-thermo-elasticity model based on new fractional derivatives with non-singular kernels and 1D transient dynamic response analysis of magnesium-based porous half-space with voids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional-order%20rate-dependent%20porous-thermo-elasticity%20model%20based%20on%20new%20fractional%20derivatives%20with%20non-singular%20kernels%20and%201D%20transient%20dynamic%20response%20analysis%20of%20magnesium-based%20porous%20half-space%20with%20voids&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Li,%20Chenlin&rft.date=2025&rft.volume=95&rft.issue=1&rft.artnum=30&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-024-02719-x&rft_dat=%3Cproquest_cross%3E3147077970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147077970&rft_id=info:pmid/&rfr_iscdi=true |