Adhesive Properties of Eco‐Friendly Hot Melt Adhesive Based on Poly(butylene adipate‐co‐terephthalate) and Rosin Maleic Resin

As environmental problems increase, disposable products are being replaced and recommended with materials with a low environmental load when it discarded. So the demand for bioplastics for building a sustainable society is increasing. This study focuses mainly on the applicability of biodegradable p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2024-10, Vol.309 (12)
Hauptverfasser: Cho, Ji‐Hyun, Ryu, Kwang‐Hyun, Kim, Hyun‐Joong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As environmental problems increase, disposable products are being replaced and recommended with materials with a low environmental load when it discarded. So the demand for bioplastics for building a sustainable society is increasing. This study focuses mainly on the applicability of biodegradable plastics and rosin maleic resin (RMR, DX‐250) blends with potential use in eco‐friendly hot‐melt adhesives (HMA). Poly (butylene adipate‐co‐terephthalate) (PBAT), which has high dimensional stability owing to low crystallinity, is used as the main polymer of the HMA. And rosin maleic resin, which is effective for increasing adhesive properties and compatibility as a tackifier. The HMA based on PBAT and RMR blends are prepared via melt‐blend extrusion. Compatibility and wettability are increased under the influence of RMR, and adhesion properties are improved, compared to that of PBAT. In addition, as confirmed polarizing microscope (POM), the addition of RMR leads to a decrease in crystallinity, which can be expected to be effective for biodegradation. This result PBAT/RMR 7/3 blend significantly enhances the adhesion strength of PBAT from 1.8 to 7.3 MPa. Therefore, PBAT with the blends containing 30 wt.% of RMR has considerable potential application in the HMA field.
ISSN:1438-7492
1439-2054
DOI:10.1002/mame.202400103