The multigrid discretization of mixed discontinuous Galerkin method for the biharmonic eigenvalue problem
The Ciarlet–Raviart mixed method is popular for the biharmonic equations/eigenvalue problem. In this paper, we propose a multigrid discretization based on the shifted‐inverse iteration of Ciarlet–Raviart mixed discontinuous Galerkin method for the biharmonic eigenvalue problem. We prove the a priori...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2025-01, Vol.48 (2), p.2635-2654 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Ciarlet–Raviart mixed method is popular for the biharmonic equations/eigenvalue problem. In this paper, we propose a multigrid discretization based on the shifted‐inverse iteration of Ciarlet–Raviart mixed discontinuous Galerkin method for the biharmonic eigenvalue problem. We prove the a priori error estimates of the approximate eigenpairs. We also give the a posteriori error estimates of the approximate eigenvalues and prove the reliability of the estimator and implement adaptive computation. Numerical experiments show that our method can efficiently compute biharmonic eigenvalues. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.10455 |