The multigrid discretization of mixed discontinuous Galerkin method for the biharmonic eigenvalue problem

The Ciarlet–Raviart mixed method is popular for the biharmonic equations/eigenvalue problem. In this paper, we propose a multigrid discretization based on the shifted‐inverse iteration of Ciarlet–Raviart mixed discontinuous Galerkin method for the biharmonic eigenvalue problem. We prove the a priori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2025-01, Vol.48 (2), p.2635-2654
Hauptverfasser: Feng, Jinhua, Wang, Shixi, Bi, Hai, Yang, Yidu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Ciarlet–Raviart mixed method is popular for the biharmonic equations/eigenvalue problem. In this paper, we propose a multigrid discretization based on the shifted‐inverse iteration of Ciarlet–Raviart mixed discontinuous Galerkin method for the biharmonic eigenvalue problem. We prove the a priori error estimates of the approximate eigenpairs. We also give the a posteriori error estimates of the approximate eigenvalues and prove the reliability of the estimator and implement adaptive computation. Numerical experiments show that our method can efficiently compute biharmonic eigenvalues.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.10455