Advancing Operational Efficiency: Airspace Users' Perspective on Trajectory-Based Operations
This work explores the evolution of the Flight Operations Center (FOC) and flight trajectory exchange tools within Trajectory-Based Operations (TBO), emphasizing the benefits of the ICAO's Flight and Flow Information for a Collaborative Environment (FF-ICE) messaging framework and Electronic Fl...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work explores the evolution of the Flight Operations Center (FOC) and flight trajectory exchange tools within Trajectory-Based Operations (TBO), emphasizing the benefits of the ICAO's Flight and Flow Information for a Collaborative Environment (FF-ICE) messaging framework and Electronic Flight Bags (EFBs). It highlights the collaborative management of four-dimensional flight trajectories, serving as a common reference for decision-making among stakeholders, including Air Navigation Service Providers (ANSPs), airspace users, and airport operators. Key enabling technologies such as Performance Based Navigation (PBN), data communications, and System-wide Information Management (SWIM) are discussed, showcasing their roles in rapid information exchange and trajectory optimization. A live flight case study demonstrates TBO concepts through international collaboration, indicating significant improvements in safety, efficiency, and sustainability. The paper presents results from TBO prototype implementations, including enhanced trajectory accuracy, improved flight path efficiency, and real-time adjustments based on evolving conditions. The integration of advanced trajectory optimization engines and automation within the FOC has led to more effective flight planning, allowing airlines to negotiate trajectory changes dynamically and optimize operations throughout the flight lifecycle. Findings suggest that TBO can enhance operational predictability, flexibility, and strategic planning while reducing uncertainty and improving alignment between strategic and tactical actions. Key conclusions include: TBO is feasible with most currently flying commercial aircraft; full TBO implementation can lead to a greener, more efficient aviation industry with widespread benefits; and continued collaboration among stakeholders is essential for the further development and realization of TBO. |
---|---|
ISSN: | 2331-8422 |